DOI: 10.1089/ars.2009.2625

Mechanisms and Implications of Reactive Oxygen Species Generation During the Unfolded Protein Response: Roles of Endoplasmic Reticulum Oxidoreductases, Mitochondrial Electron Transport, and NADPH Oxidase

Célio X. C. Santos, Leonardo Y. Tanaka, João Wosniak, Jr., and Francisco R. M. Laurindo

Abstract

Cellular mechanisms governing redox homeostasis likely involve their integration with other stresses. Endoplasmic reticulum (ER) stress triggers complex adaptive or proapoptotic signaling defined as the unfolded protein response (UPR), involved in several pathophysiological processes. Since protein folding is highly redox-dependent, convergence between ER stress and oxidative stress has attracted interest. Evidence suggests that ROS production and oxidative stress are not only coincidental to ER stress, but are integral UPR components, being triggered by distinct types of ER stressors and contributing to support proapoptotic, as well as proadaptive UPR signaling. Thus, ROS generation can be upstream or downstream UPR targets and may display a UPR-specific plus a nonspecific component. Enzymatic mechanisms of ROS generation during UPR include: (a) Multiple thiol-disulfide exchanges involving ER oxidoreductases including flavooxidase Ero1 and protein disulfide isomerase (PDI); (b) Mitochondrial electron transport; (c) Nox4 NADPH oxidase complex, particularly Nox4. Understanding the roles of such mechanisms and how they interconnect with the UPR requires more investigation. Integration among such ROS sources may depend on Ca²⁺ levels, ROS themselves, and PDI, which associates with NADPH oxidase and regulates its function. Oxidative stress may frequently integrate with a background of ER stress/UPR in several diseases; here we discuss a focus in the vascular system. *Antioxid. Redox Signal.* 11, 2409–2427.

Introduction

 ${f R}$ edox processes associated with controlled ROS generation by mitochondria or enzymes such as Nox family NADPH oxidases add an essential level of regulation to signaling pathways underlying physiological or pathological conditions (4, 7, 8, 11, 40, 42, 49, 123). Yet, cellular mechanisms associated with integration of homeostatic or disruptive (40, 42, 111) redox signaling remain insufficiently understood. In particular, it is yet unclear to what extent redox processes/oxidative stress occur within a context of cellular responses involving distinct types of stress. General stress responses are characterized by conserved interconnected signaling modules collectively referred to as the cellular stress response (46). Proteomic analyses identifying a minimal conserved core of the cellular stress response showed a key sensor and signaling role for oxidoreductases and redoxsensitive proteins (46), which integrate with expression of enzymes related to DNA damage/repair, molecular chaperones, protein degradation, fatty acid/lipid metabolism, and energy metabolism. Thus, different types of stress (e.g., hypoxia, viral infection, and amino acid deprivation) converge to some common pathways promoting general responses such as redox adaptation, changes in lipid and carbohydrate metabolism, arrest in mRNA translation, inhibition of protein synthesis, and increase in protein degradation (29, 46, 82). Therefore, it is important to note that the investigation of specific pathways leading to oxidative stress in the course of other types of stress is subjected to several biases, which include (Fig. 1): (a) the occurrence of general nonspecific cell stress responses superimposed to the specific signaling targets triggered by stressors; (b) adaptive and hormetic modules of the response superimposed to the stress background (82, 86); and (c) occurrence of phenotype changes involving stresstriggered autodeterministic programs such as apoptosis, differentiation, senescence, and autophagy (74, 129). Thus, defining whether oxidative stress is a specific process during a particular type of stress is difficult, a fact that may in part explain why mechanisms of the convergence between ROS generation

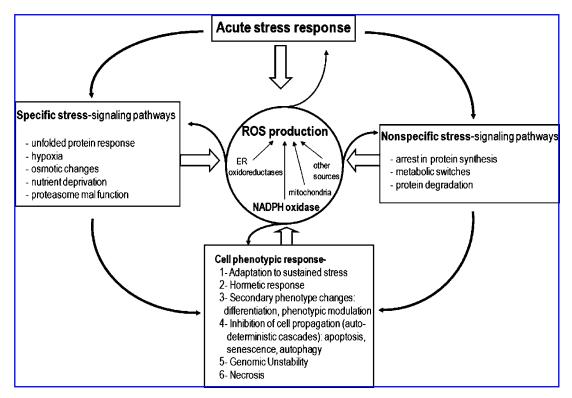


FIG. 1. Interaction between ROS generation and the cellular stress response. Scheme showing typical responses to stress. Acute stresses elicit stress-specific and general nonspecific responses. The cell may respond to acute stress in several ways. With persistence of stress, cells can adapt or even develop hormetic compensations, becoming able to tolerate a repeated stress. Secondary cell programs may ensue, such as cell differentiation (generally a result of relatively mild stresses) or phenotypic modulation [common in vascular smooth muscle cells (55)]. With persistent or unadapted stress, cells may develop strategies to limit their propagation and/or survival, namely apoptosis, senescence, or autophagy. These programs can also be adaptive to some extent. Overwhelming stresses may induce necrosis. All such processes can be influenced by and, at the same time, feed-back on ROS production. The definition of whether ROS production is "specific" to a certain type of stress is therefore subjected to several biases (see text).

and cellular stress response are not clearly understood. However, such mechanisms are relevant, considering that cellular stress response is a common feature of several pathologic processes. Moreover, portions of the cellular stress response are likely activated and integrate with signaling of physiologic cellular processes such as proliferation, metabolism, and differentiation (29, 46).

A very important modular-type stress-related signaling network, closely intersecting with cellular stress response, is the unfolded protein response (UPR). UPR-related signals are activated when the capacity of the ER to fold adequately and process newly synthesized proteins and/or to dispose of un/ misfolded proteins is insufficiently matched to ER protein load, generating ER stress (65, 89, 90, 93). The importance of ER stress in the pathophysiology of several diseases is increasingly recognized, ranging from cancer and neurodegenerative diseases to cardiovascular diseases such as cardiac hypertrophy and atherosclerosis, as well as obesity and insulin resistance (65, 134). UPR integrates pathways aimed at providing ER and cellular adaptations to stress while improving the ER capacity to successfully process and secrete proteins and to degrade those that are terminally un/ misfolded (90, 93). A number of reports have documented an association between ER stress and oxidative stress (61, 90) that, in smooth muscle cells, is at least partially dependent on the activation of Nox4 NADPH oxidase (84). While the convergence between both types of stress is now well accepted, a substantial part of the evidence for reactive oxygen species generation in the course of the UPR has been essentially indirect and circumstantial, particularly when studies are taken individually. The basic purposes of this review are: (a) to contextualize such evidences in perspective, with emphasis in recent data; (b) to discuss mechanisms whereby reactive oxygen species are enzymatically generated during ER stress, and (c) to discuss possible implications of ROS generation but upstream and downstream to UPR components.

UPR Signaling: From Activation to Apoptosis Through Adaptation

Protein folding and processing are among the major functions of the ER (99), particularly because un/misfolded proteins are extremely harmful to cells. This toxicity is due to (a) deprivation from normal protein function, (b) potentially deleterious gain-of-function, (c) tendency to form aggregates or to undergo non-native interactions, and (d) burdening of proteasomes and competition with degradation of other proteins (9). Hence, cells have developed elaborate mechanisms to prevent and/or dispatch un/misfolded proteins. Some factors are essential for ER protein processing. First, maintenance of an intra-organelle oxidative environment, discussed in the next section. Second, maintenance of high

intra-ER Ca²⁺ concentration is essential for all steps of the secretory pathway, particularly the essential function of calcium-binding chaperones such as the lectins calnexin and calreticulin (71). In addition, protein folding is connected with polysaccharide incorporation and protein traffic to Golgi and post-Golgi vesicles. These requirements are in line with some classical tools used to trigger ER stress in a variety of cell types, such as (a) dithiothreitol, a reductant; (b) thapsigargin, an ER Ca²⁺-ATPase (SERCA) inhibitor; (c) tunicamicyn, an *N*-glycosylation inhibitor; and (d) brefeldin-A, a disruptor of Golgi transport. Accumulation of un/misfolded proteins is the canonical trigger of the UPR (64), a fact further supported by elegant recent studies (62, 69), although the molecular models of how un/misfolded proteins are sensed by the ER are only partially understood.

UPR signaling has been addressed in a number of recent excellent reviews (65, 89, 90, 93) and will not be focused in depth here. The main purposes of the UPR are to support reestablishing cell homeostasis in the course of ER stress, while amplifying the capacity of the cell to process and secrete proteins (89). Figure 2 is a scheme of the main pathways for UPR signaling, a summary of which now follows. The UPR involves proximal ER stress-sensor kinases/transcription factors located at the ER membrane, namely inositol-requiring protein (IRE1), RNA activated protein kinase-like endoplasmic reticulum kinase (PERK), and activating transcription factor-6 (ATF6), each one branching into three major arms of the UPR, which are independent but communicate extensively (90). Such redundancy may give rise to a tailored and minimally activated UPR (93). The translational arm of the UPR involves acute decreases in protein load due to arrest in translation initiation, degradation of mRNA for some ER lumen proteins, and decreased precursor translocation to the ER (89). Such responses are necessarily transient if cell function is not to be disrupted (90). Arrest in translation initiation, due to PERK-dependent phosphorylation of eukaryotic translation initiation factor 2 (eIF2 α), is a converging pathway of integrated cell response to stress (29), since $eIF2\alpha$ is also phosphorvlated by other stress-specific kinases. eIF2 α is part of a multimeric eIF2 complex that initiates cap-dependent protein translation by coupling the 40S ribosomal subunit to the initiating tRNAmet, a process that involves GTP binding and is regulated by GDP exchange (121). This response is essential and common to many stresses because the processes of protein synthesis and chaperoning, as well as degradation, involve significant ATP consumption (9, 99), the avoidance of which is a uniform goal of the cellular stress response (46). On the other hand, eIF2\alpha phosphorylation activates capindependent translation of a few mRNAs, including UPRrelated proteins such as the transcription factor ATF4 (89, 90). IRE1, the most ancestral component of the UPR, has both kinase and endoribonuclease activites, the latter accounting for the formation of an active spliced mRNA for XBP1, coding for a transcription factor. Both ATF4 and XBP1, as well as active spliced form of ATF6, promote transcription of genes for ER chaperones such as Grp78 (also known as Bip), Grp94, and calreticulin, as well as for components of ER-associated protein degradation (ERAD), protein translocation and traffic, carbohydrate and lipid synthesis, or amino acid sufficiency (89, 90, 93). In addition, ATF4, as well as pathways involving ATF6, can also activate another transcription factor, CHOP (also known as GADD153), a major contributor to ER stresstriggered apoptosis, which is executed through ER-specific initiator caspases (caspase-12 in many species and its equivalent in humans) and downstream caspases 9 and 3 (101), as well as other less well-defined pathways (90). XBP-1 also codes for genes associated with cell differentiation, as well as DNA repair pathways (1). In addition, the ER significantly expands in size during the UPR (89). The main operational markers of the UPR are summarized in Table 1.

Similar to the cellular stress response, each sensor-specific UPR arm involves both adaptive (prosurvival) and proapoptotic pathways, the latter converging to CHOP, but also involving an IRE1/JNK pathway (90, 93). While apoptosis is usually the result of sustained or overwhelming ER stress, both adaptive and proapoptotic signals appear to be activated

FIG. 2. Scheme depicting main pathways of UPR signaling. ER stress triggers the unfolded protein response (UPR), which is composed by proadaptive and proapoptotic signaling pathways, associated essentially to the three main arms of the UPR, dictated by ER membrane sensors IRE1, ATF6, and PERK. PERK and IRE1 are activated via phosphorylation mechanisms (marked as P), whereas ATF6 is cleaved in the Golgi before nuclear translocation. Proadaptive signaling tends to correct ER stress, thus inhibiting further UPR signaling to some extent. While proapoptotic signaling is usually the result of sustained or overwhelming ER stress, both proadaptive and proapoptotic signaling are co-activated during the UPR. For further details, please see text.

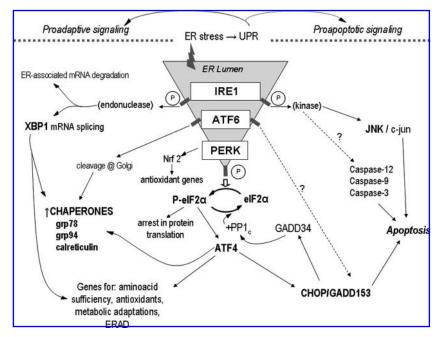


Table 1. Main Operational Markers of the UPR

ER stress sensors
IRE1 phosphorylation
PERK phosphorylation
ATF6 cleavage, nuclear migration
UPR pathways
eIF2α phosphorylation
XBP1 mRNA splicing
ATF4 nuclear expression
CHOP nuclear expression
Expression of KDEL chaperones: Grp78, Grp94, calreticulin, Orp150

simultaneously at all stages of UPR (90). The pathophysiological consequences of the UPR are highly model- and cellspecific and depend on factors such as protein load and differentiation status. Also, the impact of ER stress at a supracellular level depends on whether cells are terminally differentiated (e.g., neuron, cardiomyocyte) or quickly renewable (e.g., lymphocyte, smooth muscle cell). The factors that determine the transition from adaptation to apoptosis are not yet clear and a definite point-of-no-return—if in fact there is one—has not been identified (90). Cessation of IRE1 and persistence of PERK signaling over time could act as an apoptosis trigger, since forced persistence of IRE1 prevents evolution to apoptosis (56). In addition, some proteins may act as regulators of apoptosis susceptibility during the UPR. For example, the normally proapoptotic (when in mitochondria) proteins Bax and Bak form a complex with IRE1 at the ER membrane, synergize with UPR signaling, and limit cell injury during ER stress (32). Proteins coding for autophagy in the course of ER expansion can be apoptosis-protective (5). Adaptation to chronic sublethal ER stress involves downregulation of mRNA stability for proapoptotic proteins, and upregulation of adaptive ones (90). In addition, sustained induction of the integrated stress response (via PERK/ P-eIF2α/ATF4) may protect cells via hormetic induction of antioxidant defenses (52, 59).

ER-associated degradation (ERAD) is part of the protein quality control system and intersects with the UPR at several levels. For example, prior to degradation by the proteasome, un/misfolded proteins are retro-translocated to the cytosol while reduced by reductase chaperones such as PDI (9) or Erdj5 (88). Also, the transcription factor XBP1 codes for many ERAD proteins (1, 67, 89). Thus, the UPR is generally associated with an increase in genes for protein degradation, although the genes/proteins responsible for UPR and ERAD superimpose only partially (67).

Protein Folding and Redox ER Homeostasis: The ER as a Potential ROS Source

Protein folding is a highly redox-dependent pathway, considering the essential role of disulfide formation in folding, processing, and assembling of membrane and secretory proteins (3). Reflecting its topologic analogy with the extracellular milieu, the ER lumen not only has high Ca⁺⁺ concentration, but is among the most oxidizing intracellular compartments, with a GSH/GSSG ratio of 1:1 to 3:1, much lower than the cytosolic ratios of 30 to 100:1 (37, 119). The oxidizing ER ratios are close to optimal *in vitro* ratios for

protein folding (which are $\sim 5:1$), while more oxidizing ratios can be harmful by promoting aggregation (99, 114). This oxidizing environment is mainly sustained by the thiol oxidoreductase Ero1 and to some extent by GSSG itself (12, 114, 119), and is continuously buffered essentially by cytosolicderived reduced glutathione, so that the ER is a net consumer of GSH (15). The oxidase Ero1, which binds to the internal face of the ER lumen (96), transfers oxidizing equivalents mainly to its substrate PDI (115, 119) and/or potentially to PDI analogs, in a way essentially independent of the redox environment (114). In mammalian cells, there are 2 Ero1 isoforms with similar catalytic mechanisms and substrate preferences, but distinct with respect to tissue distribution and transcriptional regulation, with only $\text{Ero}1\beta$ being inducible by ER stress, while $\text{Ero1}\alpha$ is inducible by hypoxia (114, 119). The structure and properties of PDI, a dithiol-disulfide oxidoreductase and chaperone from the thioredoxin superfamily, as well as of its family members, have been previously reviewed (12, 19, 50, 122). Oxidized PDI can promote oxidation or—as its unique characteristic function—isomerization (i.e., the rearrangement of disulfide bonds involving multiple sequential thiol oxidations and reductions) of disulfide bonds in client proteins. PDI can also act as a reductase, mainly in reducing environments outside the ER (122). Importantly, most substrates appear to bind to PDI through its b' domain hydrophobic pocket, rather than through active site thiols (19, 50, 122). The chaperone activity of PDI appears to be independent of its thiol groups (122).

The elegant catalytic mechanism of Ero1 (described for yeast Ero1p) involves direct oxidation of PDI thiols by a shuttle cysteine pair, which is reoxidized by a cysteine pair from the active site, an exchange allowed by dynamic approximation of the two sites due to flexibility of the peptide loop containing the shuttle cysteines (27, 95, 119). This mechanism, in addition to other features of Ero1 catalysis, prevents the strongly oxidizing Ero1 active thiols from introducing non-native disulfides into nonspecific substrates (95). Also, it accounts for the known capacity of Ero1 to preferentially oxidize vicinal dithiols (e.g., from PDI, thioredoxin, and DTT) rather than monothiols (GSH) or multiple nonvicinal thiols (119). This mechanism also allows regulation of Ero1 activity exerted by additional regulatory-type cysteines which, when oxidized, restrict flexibility of the peptide loop containing the shuttle cysteines (96), thus providing feedback defense against excessive oxidation. The redox interaction of Ero1α with PDI occurs via dithiols from PDI a' domain, while binding requires PDI b' domain (119). A critical step in Ero1 catalysis is the reoxidation of its active site cysteines. This appears to occur through transfer of reducing equivalents from Ero1 reduced dithiol to molecular oxygen via FAD- which is tightly bound at equimolar ratio to Ero1 generating hydrogen peroxide according to the equation:

$$2RSH + O_2 \rightarrow RSSR + H_2O_2$$

Therefore, Ero1 is an oxygen-consuming enzyme that is able to generate ROS (27, 115, 119) *via* mechanisms that are very similar to those of sulfhydryl oxidases such as Erv2p and the QSOX family (3, 27). In the latter, the generation of hydrogen peroxide is directly linked to thiol substrate oxidation *via* structural thioredoxin domains, whereas Ero1 bears only an Erv-simile flavo-oxidase domain (95). Catalase or

superoxide dismutase do not alter disulfide formation due to Ero1, indicating that ROS are by-products, not mediators, of its catalysis (115). The potential importance and limitations of Ero1/PDI mechanism as a ROS source during the UPR is discussed below.

Close to nothing is known about ER compartmentalization of antioxidant enzymes. Remarkably, CuZnSOD levels appear to be very low or nonexistent in liver smooth and rough endoplasmic reticulum fractions, similarly to catalase (58). There is little reference to local ER roles of glutathione peroxidase(s), although some *Arabidopsis* GPx may be located in the ER (87), while glutathione reductase expression is negligible (85). Similarly, thioredoxin reductase and thioredoxin are not reported to be present in the ER, and the antioxidant role of the several ER-located PDI family members with reductase activity (12, 19) is unknown. Microsomal glutathione transferase 1 (with peroxidase activity) is important for oxidant protection and xenobiotic metabolism, but its role in extrahepatic protection against oxidants is less clear (98). The secreted heparin-binding enzymes peroxiredoxin IV, which efficiently reacts with hydrogen peroxide (123), and extracellular SOD (79), may be rapidly processed within the ER, but it is unclear whether they exert antioxidant effect within the organelle lumen. In fact, peroxiredoxin IV retained in the ER forms homodecamers with no obvious antioxidant role (109), although peroxiredoxin IV KO mice do exhibit increased oxidant-mediated sperm cell death (38). Thus, it is doubtful whether the ER is endowed with efficient enzymatic antioxidant protection, at least in basal conditions. It is possible that, similarly to the ER-analogous extracellular milieu, small molecules such as tocopherols (113), ascorbate (57), and dietary phenolic antioxidants (41), which traffic through the ER, may be relatively important, in addition to above mentioned glutathione from cytosol or cysteine (29, 42). In any case, it appears that even professional secretory pancreatic islet cells from nondiabetic individuals (known to have normal antioxidant defenses) are able to resist hyperglycemic ER stressor stimuli (63), indirectly suggesting an ability to deal with protein folding-associated oxidants.

It is important to consider that a state of ER stress is usually characterized through the increased expression of UPR markers, such as KDEL chaperones (Table 1). However, this is essentially a utilitarian definition which translates into the contradictory dilemma of defining a stress through a downstream adaptive response, conveying little about whether homeostasis has been achieved. Recently, a fluorescent indicator of ER protein oxidation was developed in yeast (69), indicating that the UPR is both necessary and sufficient to buffer the underoxidation of proteins that occurs during disturbed ER protein processing. This so-called ER oxidative folding stress is an important common pathway of challenges to ER homeostasis that cannot be inferred solely from downstream indicators of the UPR (Table 1). For example, cells deficient in specific components of UPR signaling, oxidative ER protein folding, or ER-mediated protein degradation exhibited distinct downstream indicators of UPR activation, but the redox state of ER protein oxidation indicator was normal at baseline, although it became altered after varied stress maneuvers (69). Thus, multiple ER functional pathways converge to redox protein folding, bringing about a solid basis to correlate redox processes and ROS generation with ER stress.

Convergence Between Oxidative Stress and ER Stress: Coincidence or Cooperation?

The connection between redox processes and the UPR, analyzed within the framework of specific and nonspecific stress responses, as well as primary, adaptive, and secondary events (Fig. 1), suggests a potentially multiform picture. However, there are common denominators including: a) induction of adaptive antioxidant pathways; b) production of ROS during the terminal stages of the UPR; and c) early production of ROS during the UPR.

Induction of antioxidant pathways is an important part of the adaptive response that characterizes the UPR. Pathways involving PERK-dependent activity stimulate several antioxidant defenses via the activating transcription factor (ATF4) (29, 52, 89, 90) and/or via Nrf2/Keap (13, 14). Such genes include, but are not restricted to, those involved in glutathione biosynthesis, as well as glutathione transferase, heme oxygenase-1, manganese superoxide dismutase, uncoupling mitochondrial protein 2 (*Ucp2*), amino acid/cysteine transporters and ubiquitin/proteasome system components. Induction of antioxidant defenses during the UPR indirectly suggests that oxidants can mediate noxious effects during UPR. On the other hand, while the increase in glutathionerelated genes may buffer and delay decreases in cellular glutathione during ER stress in some cell types (45), intracellular glutathione levels and GSH/GSSG ratios are often decreased early during the UPR. This is the case of vascular smooth muscle cells incubated with tunicamycin (5 μ g/mL, 4 h), which show ~70% decrease in GSH/GSSG ratio, despite staying viable for additional 48 h (unpublished observations from our laboratory, n = 4). Decrease in glutathione levels during the UPR may reflect consumption due to reduction of non-natural disulfide bonds in proteins (see below), oxidation mediated by free radical or 2-electron oxidants (40), glutathiolation, increases in intracellular Ca²⁺ (88), cell leakage, or all of these. In addition, the reported decrease in mRNA level and protein processing of extracellular SOD after homocysteine incubation in vascular smooth muscle cells (79) may provide deficit of this important vascular cell-specific antioxidant.

A number of reports have addressed the generation of oxidants during the UPR and their possible implication. Here, we review some studies that investigated this issue in a more direct, paradigmatic, or mechanistic way, while this summary (Table 2) is not exhaustive. This analysis and other reviews (e.g., ref. 61) indicate that several such studies have addressed a connection between oxidant generation and the terminal proapoptotic stages of the UPR. In fact, since apoptosis is usually the outcome of severe and/or sustained unadapted ER stress, it is conceivable that the level and/or time course of ROS generation might act as a switch triggering apoptosis in individual cells or a cluster of neighbor cells. Clearly, pharmacological or molecular interventions that decrease oxidant production are associated with decrease in cell death due to the UPR (29, 30, 59, 62, 75, 84, 91, 107, 127, 135). Prior studies provided some information on how ROS contribute to proapoptotic UPR stages. Consumption of reduced glutathione by protein oxidation or glutathiolation during UPR (61), as well as CHOP-mediated Ero1 induction and consequent increase in ER protein load (64) enhance ER oxidation, further compromising cells to apoptosis (68) and possibly enhancing formation of insoluble protein aggregates (64). Indeed, GSH

Table 2. A Summary of Some Studies Addressing the Convergence Between ER Stress and Oxidative Stress

	Fro-1 silencing oxidant 79	SI	<i>S1</i>	gans R	gans R pres.	š š	res.	res.	ans.	R; R res.	R. R. H.	R. R	in i	ms m
: : :	Ero-1 silencing↓oxidant production in C. <i>elegans</i>		GSH suppresses ROS despite persistent ER	GSH suppresses ROS despite persistent ER stress Antioxidant genes ↑in CHOP-/- mice expres	GSH suppresses ROS despite persistent ER stress Antioxidant genes ↑in CHOP-/- mice expres FVIII Silencing of Nox-4↓UPR	GSH suppresses ROS despite persistent ER stress Antioxidant genes † in CHOP-/- mice expres FVIII Silencing of Nox-4 LUPR and apoptosis Preemptive Tunicamycininduced UPR TINFx- mediated ROS and cell	GSH suppresses ROS despite persistent ER stress Antioxidant genes † in CHOP-/- mice expres FVIII Silencing of Nox-4 LUPR and apoptosis Preemptive Tunicamycininduced UPR TNF¢- mediated ROS and cell death Forced Grp78 expression LUPR but not ox. stress	GSH suppresses ROS despite persistent ER stress Antioxidant genes † in CHOP—/— mice express FVIII Silencing of Nox-4 LUPR and apoptosis Preemptive Tunicamycininduced UPR TNFx-mediated ROS and cell death Forced Grp78 expression LUPR but not ox. stress	GSH suppresses ROS despite persistent ER stress Antioxidant genes † in CHOP—/— mice expres FVIII Silencing of Nox-4 ↓ UPR and apoptosis Preemptive Tunicamycininduced UPR ↓ TNFænediated ROS and cell death Forced Grp78 Forced Grp78 expression ↓ UPR but not ox. stress	GSH suppresses ROS despite persistent ER stress Antioxidant genes † in CHOP—/— mice express FVIII Silencing of Nox-4 LUPR and apoptosis Preemptive Tunicamycininduced UPR LTNF2— mediated ROS and cell death Forced Grp78 expression UPR but not ox. stress Gytochrome-c KO UPR; TSP ciloxoina viability, TSP ciloxoina	GSH suppresses ROS despite persistent ER stress Antioxidant genes † in CHOP-/- mice express. FVIII Silencing of Nox-4 LUPR and apoptosis Preemptive Tunicamycininduced UPR LTNF2-mediated ROS and cell death Forced Grp78 expression LUPR but not ox. stress Cytochrome-c KO LUPR; ISR silencing Lyiability Antioxidants and dominant-negative	GSH suppresses ROS despite persistent ER stress Antioxidant genes † in CHOP—/— mice express. FVIII Silencing of Nox-4 LUPR and apoptosis Preemptive Tunicamycininduced UPR LTNF2-mediated ROS and cell death Forced Grp78 expression LUPR but not ox. stress Cytochrome-c KO LUPR; ISR silencing Lviability Antioxidants and dominant-negative CHOP † survival SOD-mimetic but not	GSH suppresses ROS despite persistent ER stress Antioxidant genes † in CHOP—/— mice express FVIII Silencing of Nox-4 LUPR and apoptosis Preemptive Tunicamycininduced UPR TNFx—mediated ROS and cell death Forced Grp78 expression LUPR but not ox. stress not ox. stress Cytochrome-c KO LUPR; ISR silencing Lyiability Antioxidants and dominant-negative CHOP † survival SOD-mimetic but not catalase LCHOP Forced ORP150 expression is protective	GSH suppresses ROS despite persistent ER stress Antioxidant genes † in CHOP-/- mice express. FVIII Silencing of Nox-4 LUPR and apoptosis Preemptive Tunicamycininduced UPR TNFg-mediated ROS and cell death Forced Grp78 expression LUPR but not ox. stress Not silencing Lviability Antioxidants and dominant-negative CHOP † survival SOD-mimetic but not catalase LCHOP Forced ORP150 expression is protective Cell death is mitochondrial
Ero-1 silencing ↓ oxidant production in <i>C. elega</i>		GSH suppresses ROE despite persistent I		Antioxidant genes † in CHOP-/- mice ex	Antioxidant genes † in CHOP—/— mice e? FVIII Silencing of Nox-4 ↓ I	Antioxidant genes † in CHOP—/— mice e9 FVIII Silencing of Nox-4 ↓ I and apoptosis Preemptive Tunicam: induced UPR ↓ TN mediated ROS and c	Antioxidant genes † in CHOP—/— mice e> FVIII Silencing of Nox-4↓I and apoptosis Preemptive Tunicaminduced UPR↓TNJ mediated ROS and codeath Forced Grp78 expression↓UPR be not ox. stress	Antioxidant genes † in CHOP—/— mice es FVIII Silencing of Nox-4↓I and apoptosis Preemptive Tunicam; induced UPR ↓ TNJ mediated ROS and codeath Forced Grp78 expression ↓ UPR b not ox. stress	Antioxidant genes † in CHOP—/— mice es FVIII Silencing of Nox-4 ↓ I and apoptosis Preemptive Tunicaminduced UPR ↓ TNJ mediated ROS and codeath Forced Grp78 expression ↓ UPR b not ox. stress	Antioxidant genes † in CHOP—/— mice es FVIII Silencing of Nox-4 ↓ I and apoptosis Preemptive Tunicami induced UPR ↓ TNJ mediated ROS and codeath Forced Grp78 expression ↓ UPR b not ox. stress Cytochrome-c KO ↓ I right	Antioxidant genes † in CHOP—/— mice es FVIII Silencing of Nox-4 ↓ I and apoptosis Preemptive Tunicaminduced UPR ↓ TNJ mediated ROS and codeath Forced Grp78 expression ↓ UPR b not ox. stress Cytochrome-c KO ↓ I ISR silencing ↓ viak Antioxidants and edominant-negative CUDD for control of CUDD for control	Antioxidant genes † in CHOP—/— mice es FVIII Silencing of Nox-4 ↓ I and apoptosis Preemptive Tunicaminduced UPR ↓ TNJ mediated ROS and codeath Forced Grp78 Expression ↓ UPR b not ox. stress Cytochrome-c KO ↓ I ISR silencing ↓ viak Antioxidants and dominant-negative CHOP ↑ survival SOD-mimetic but no	Antioxidant genes † in CHOP—/— mice es FVIII Silencing of Nox-4 ↓ I and apoptosis Preemptive Tunicaminduced UPR ↓ TNJ mediated ROS and codeath Forced Grp78 Expression ↓ UPR b not ox. stress Cytochrome-c KO ↓ I ISR silencing ↓ viak Antioxidants and dominant-negative CHOP ↑ survival SOD-mimetic but not catalase ↓ CHOP Forced ORP150 exprise is protective	Antioxidant genes † in CHOP—/— mice es FVIII Silencing of Nox-4 ↓ I and apoptosis Preemptive Tunicaminduced UPR ↓ TNJ mediated ROS and codeath Forced Grp78 expression ↓ UPR b not ox. stress Not ox. stress Cytochrome-c KO ↓ I ISR silencing ↓ viab Antioxidants and dominant-negative CHOP ↑ survival SOD-mimetic but not catalase ↓ CHOP Forced ORP150 exprise protective Cell death is mitochor dependent
Ero-1 silencing c production in C GSH suppresses despite persiste	GSH suppresses lespite persiste		Antioxidant gene CHOP-/- mic		Silencing of Nox-	Silencing of Noxand apoptosis Preemptive Tunic induced UPR mediated ROS ar	Silencing of Noxand apoptosis Preemptive Tunic induced UPR \(\) mediated ROS ar death Forced Grp78 expression \(\) UI not ox. stress	Silencing of Noxand apoptosis Preemptive Tunic induced UPR \(\) mediated ROS ar death Forced Grp78 expression \(\) UF UR of the control	Silencing of Noxand apoptosis Preemptive Tunic induced UPR \(\) mediated ROS an death Forced Grp78 expression \(\) UF not ox. stress	Silencing of Noxand apoptosis Preemptive Tunic induced UPR prediated ROS and death Forced Grp78 expression \ UF not ox. stress Cytochrome-c KC ISB cilonding UF	Silencing of Noxand apoptosis Preemptive Tunic induced UPR \(\) mediated ROS and death Forced Grp78 expression \(\) UF not ox. stress Cytochrome-c KC ISR silencing \(\) Antioxidants and dominant-negal dominant-negal control \(\) Commender of the present and dominant-negal dominant-negal control \(\) Commender of the present and dominant-negal control \(\) Commender of the present and dominant-negal control \(\) Commender of the present and dominant-negal control \(\) Commender of the present and \(\) Commender of the present and \(\) Commender of the present and \(\) Commender of \	Silencing of Noxand apoptosis Preemptive Tunic induced UPR \(\) mediated ROS and death Forced Grp78 expression \(\) UF not ox. stress Cytochrome-c KC ISR silencing \(\) Antioxidants and dominant-negative CHOP \(\) survive SOD-mimetic but ot the stress of the st	Silencing of Noxand apoptosis Preemptive Tunic induced UPR \(\) mediated ROS an death Gath Forced Grp78 Expression \(\) UF not ox. stress The control ox. stress Cytochrome-c KC Silencing \(\) Antioxidants and dominant-nega CHOP \(\) surviv. SOD-mimetic but catalase \(\) CHO Forced ORP150 \(\) is protective	Silencing of Noxand apoptosis Preemptive Tunic induced UPR \(\) mediated ROS an death Forced Grp78 expression \(\) UF not ox. stress Not ox. stress Cytochrome-c KC ISR silencing \(\) Antioxidants and dominant-nega CHOP \(\) surviv. SOD-mimetic but catalase \(\) CHOP \(\) surviv. SOD-mimetic but catalase \(\) CHOP \(\) fsurviv. SOD-mimetic but catalase \(\) CHO \(\) Forced ORP150 e is protective Cell death is mito denendent
+ Ero-1 s prod + GSH s desp stres + Antiox CHC	O A	A	T/1	FVI Silenci	046	and + + Preem; indu indu								
+ + +	+ +	+			+	- +	-+ +	-+ +	-+ + ++	-+ + ++	-+ + ++ +	-+ + ++ +	-+ + + + +	-+ + ++ +
CFd H-123 CF, HODE carbonyls,	:-123 F, HODE arbonyls, Fd	F, HODE arbonyls, Fd	Fd		Fd Fd		щ	щ	щ	E tein	HE otein carbonyls CFd	E tein arbonyls Fd	E tein arbonyls Fd	E tein arbonyls Fd
Ä Ä Ä Ä Ä;	% *			_	DCFd RK; DCFd sion		DHE	DHE	DHE	DHE Protein	DHE Protein carbony DCFd	DHE Protein carbony DCFd	DHE Protein carbony DCFd	DHE Protein carbony DCFd
Several genes IRE1 and others XBP1, ATF4, GADD34,	IRE1 and others XBP1, ATF4, GADD34,	XBP1, ATF4, GADD34,	Erol, CHOP	Ca ⁺⁺ oscillations; Grp78; Grn94 CHOP IRE1:INK	elF2α; XBP1; ATF6; PERK; UPR-responsive	promoters; ER expansion	promoters; ER expansis eIF2 α , but not PERK or XBP-1 Grp78, Grp94; ATF6; CHOP; ORP150	promoters; ER expansise EIF2a, but not PERK or XBP-1 Grp78; Grp94; ATF6; CHOP; ORP150 Grp78; Grp94	promoters; ER expansi elF2α, but not PERK or XBP-1 Grp78; Grp94; ATF6; CHOP; ORP150 Grp78; Grp94 No effect Grp78; CHOP elF2α GADD34; Grp78, CHOP	promoters; ER expansis eIF2 α , but not PERK or XBP-1 Grp78; Grp94; ATF6; CHOP; ORP150 Grp78; Grp94 No effect Grp78; CHOP eIF2 α GADD34; Grp78, CHOP PERK; eIF2 α ; ATF4	promoters; ER expansis eIF2 α , but not PERK or XBP-1 Grp78; Grp94; ATF6; CHOP; ORP150 Grp78; Grp94 No effect Grp78; CHOP eIF2 α GADD34; Grp78, CHOP PERK; eIF2 α ; ATF4 Grp78; CHOP	promoters; ER expansis elF2 α , but not PERK or XBP-1 Grp78; Grp94; ATF6; CHOP; ORP150 Grp78; Grp94 No effect Grp78; CHOP elF2 α GADD34; Grp78, CHOP PERK; elF2 α ; CHOP CHOP PERK; olF2 α ; CHOP	promoters; ER expansis elF2 α , but not PERK or XBP-1 Grp78; Grp94; ATF6; CHOP; ORP150 Grp78; Grp94 No effect Grp78; CHOP elF2 α GADD34; Grp78, CHOP elF2 α GADD34; Grp78, CHOP CHOP PERK; elF2 α ; ATF4 Grp78; CHOP	eIF2a, but not PERK or XBP-1 Grp78, Grp94, ATF6; CHOP; ORP150 Grp78; Grp94 No effect Grp78; CHOP eIF2a GADD34; Grp78, CHOP PERK; eIF2x; ATF4 Grp78; CHOP CHOP, not Grp78 CHOP, not Grp78 CHOP; NDEL chaperones; JNK Grp78; eIF2x; CHOP; CHOP; KDEL chaperones; JNK Grp78; eIF2x; CHOP; CHOP; KDEL chaperones; JNK Grp78; eIF2x; CHOP; CASTAGAS
Tunicamycin Se Misfolded IR carboxy-peptidase Y expression Misfolded factor VIII expression	ase	_		7-Ketocholesterol Ca	7-Ketocholesterol TNF¤ eI		Λ)) μΜ)) ont
Cell death Cell number and death	Cell number and death		Apoptosis and other	Apoptosis	Cell death		Apoptosis	Apoptosis	Apoptosis \$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Apoptosis ↓Protein synthesis Cell viability	Apoptosis ↓ Protein synthesis Cell viability Apoptosis	Apoptosis ↓ Protein synthesis Cell viability Apoptosis	Apoptosis ↓ Protein synthesis Cell viability Apoptosis	Apoptosis Urotein synthesis Cell viability Apoptosis Apoptosis Apoptosis
IRK -/- or ATF4 $-/-$	<u> </u>	`			VSMC L929 fibrosarcoma cells		ular cells	ular cells	oular cells	Renal tubular cells MEF HEK293 MEF, HEK-293	Renal tubular cells MEF HEK293 MEF, HEK-293 Bronchial epithelial cells	oular cells K-293	Renal tubular cells MEF HEK293 MEF, HEK-293 Bronchial epithelial cells	ular cells 6-293 Il cells Il cells

replenishment prevents death in yeast even with continued presence of misfolded proteins in ER (30). Also, prior evidence implicates JNK and ASK1 as mediators of ROS-dependent apoptosis triggered *via* IRE1 (84, 89). Importantly, hypoxia, known to promote the UPR through pathways not completely elucidated, induces endogenous ROS-dependent PERK/eIF2a/ATF4 integrated stress response, which accounts for cell survival (59).

The studies reported in Table 2 provide also an overview of ROS generation, assessed through direct or indirect tolls, at all stages of the UPR, including earlier stages. Some conclusions derived from this analysis include the following:

- 1. Exogenous oxidants (such as peroxides, ROS generators, metals, lipid oxidation products, or cigarette smoke) can trigger several aspects of the UPR, which vary according to stimulus and cell type, as depicted in Table 2. Although some of these products [e.g., 7-ketocholesterol in vascular smooth muscle cells (84)] can trigger the full UPR signaling spectrum, exogenous ROS have provided conflicting and less clear information. Hydrogen peroxide promoted only eIF phosphorylation in L929 tumor cell line (127) (Table 2). Meanwhile, in renal tubular cells, hydrogen peroxide promoted no UPR signaling, whereas the redox-cycling compound menadione promoted chaperone and CHOP expression (135) (Table 2). In most cases, there was no clear concentration-dependent effect. In our laboratory, vascular smooth cells incubated with 10-1,000 μM hydrogen peroxide (during 14h) showed only minor dose-independent increases in the expression of chaperones Grp78 and Grp94 and eIF2α phosphorylation (while CHOP expression was unaltered), an effect observed only in the absence of serum. Interestingly, incubation with serum alone consistently induced moderate increase in basal chaperone expression, which was further unaffected by hydrogen peroxide (unpublished observations). Because experiments with exogenous ROS are limited by induction of nonspecific mass changes in signaling targets (23), as well as by kinetic and diffusional constraints (40, 123), such results, while providing general indication that oxidants support the UPR, must be regarded with care. Nevertheless, a general conclusion allowed from all those experiments is that exposure to ROS alone is generally not sufficient to trigger the UPR. This may at least partially hold true for endogenous oxidants, since the knock-down of NADPH cytochrome b5 reductase, which is redox-protective for pancreatic islet cells, promotes severe diabetes in a way independent of effects on endoplasmic reticulum stress (48).
- 2. The above considerations indicate a coincidence between UPR induction and oxidant production, with several examples suggesting ER stress downstream of oxidant production. On the other hand, there are fundamental observations indicating that classical ER stressors (29) or the introduction of misfolded proteins into the ER (30, 62) can trigger downstream oxidant generation. Specifically, the introduction of misfolded protein into the ER in yeast deficient in ERAD promoted UPR-dependent ROS generation which was normalized during UPR-silencing mutations or GSH replenishment despite continued ER stress (30). In addition, a recent elegant study showed that the *in vivo* transfection of

- misfolding-prone coagulation factor VIII in mice triggered several indicators of the UPR in the liver and enhanced apoptosis. All such changes were prevented by genetic deletion of CHOP or the exogenous antioxidant BHA (62).
- 3. The majority of reported measurements of oxidant production during the UPR make use of indirect markers of oxidant generation (e.g., indexes of lipid or protein oxidation), total DHE fluorescence or fluorescence of DCF derivatives. All these indexes have limitations for the accurate detection of ROS (21, 123), the importance of which is discussed below. Total DHE fluorescence reflects the summation of products derived not only from superoxide but also from nonspecific oxidants including peroxides, peroxidase activity, and heme (21). DCF, often believed to measure hydrogen peroxide, does not in fact react directly with this species. Rather, this reaction requires catalysts such as peroxidases or metal complexes and is thus strongly influenced by their levels. Moreover, DCF is superoxide-insensitive and reacts with several nonspecific oxidants [e.g., peroxynitrite, thiyl radical (123)]. Particularly, DCF can react with cytochrome-c leaking from mitochondria during early apoptosis (92). Also, reaction of DCF-derived radical intermediates with oxygen can generate reactive species that artifactually amplify the fluorescence signal and render them false positively inhibitable by scavengers such as catalase (92). Thus, while all these data, taken together, provide compelling indication that oxidants are generated during the UPR, analysis of individual results does not allow one to discriminate or to quantify any specific ROS and requires careful critical analysis.
- 4. Several signaling UPR markers other than those related to apoptosis signaling are mitigated by antioxidant interventions in the course of exposure not only to oxidants but also to stimuli such as hypoxia, cytokines (e.g., TNF α) and forced expression of mutated misfolded proteins (Table 2). This suggests that oxidant production may mediate several aspects of the adaptive UPR signaling, in addition to terminal cell death. We investigated these aspects by means of specific lossof-function experiments. (Supplemental Methods; see www.liebertonline.com/ars) We first assessed whether disrupting the UPR by interfering with eIF2α phosphorylation would affect UPR-induced ROS (Fig. 3A and C). Phosphorylation of eIF2α via PERK, an early target of UPR as well as many other stresses (121), promotes translational arrest in protein synthesis and enhances transcription of some genes. Among these, the transcription factor GADD34 is a regulatory subunit of eIF2α-directed protein phosphatase-1 (PP1c) complex promoting eIF2α dephosphorylation, thus providing negative UPR feedback (64, 80). VSMC were transiently transfected with plasmids coding for full-length GADD34 or a truncated version in which the PP1c $binding\,domain\,was\,deleted\,(64).\,Corresponding\,changes$ in eIF2α phosphorylation after tunicamycin incubation (Fig. 3A) showed: (a) normal eIF2α phosphorylation peaking at 2h and sustained until 8h of tunicamycin stimulus; (b) marked decrease in phosphorylation after full-length GADD34 transfection; and (c) more intense and sustained eIF2a phosphorylation after truncated

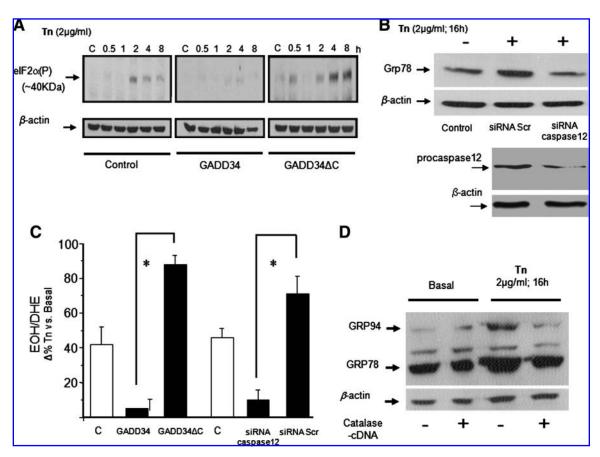


FIG. 3. Interdependence between the UPR and ROS generation. (A) Representative immunoblot depicting phosphorylation of eIF2α in control vascular smooth muscle cells (transfected with empty vector) or in cells overexpressing full-length GADD34 or GADD34 truncated in its C-terminal protein phosphatase 1-activating domain (GADD34ΔC), acting as a dominant negative control (64, 80). GADD34 and GADD34ΔC expressed in pcDNA3 vector were kindly provided by Dr. David Ron (New York University, New York). Rabbit aortic vascular smooth muscle cells $(3 \times 10^5 \text{ cells})$ grown for 24 h in 6-well dishes were transiently transfected with $5 \mu g$ cDNA using lipofectamine 2000 ($10 \mu L$, Invitrogen) according to manufacturer's instructions (51). VSMC were used for the designed experiments 24 h after transfection. Cells were exposed to 2 µg/ml tunicamycin for the indicated time periods. Prior experiments (not shown) showed that such tunicamycin concentration was associated with >95% cell viability within the time frame of such experiments. (B) Western analysis of Grp78 (with specific antibody) in cells transfected with caspase-12 (GCACAUUCCUGGUCUUUAUTT) or scrambled (scr) siRNA or in control cells exposed to Tunicamycin ($2\mu g/ml$ for 8 h). Efficiency of caspase-12 siRNA was confirmed by decrease in procaspase12 levels, shown, together with control scrambled siRNA, in the insert below. (C) Effect of GADD34 or GADD34\(Delta\)C overexpression or caspase-12 siRNA or its scrambled control in superoxide formation (analyzed through 2-hydroxyethidium = EOH) (21) after incubation with Tunicamycin ($2\mu g/ml$, 4h). Values are mean \pm SE of 3 experiments; *p < 0.05. (D) Representative western analysis depicting the response of KDEL-containing proteins to Tunicamycin (2 μ g/ml, 16h) in the presence or absence of catalase overexpression (confirmed through a ~70% increase in activity) or in Lipofectamine-exposed controls. The catalase plasmid was kindly provided by Ralf Brandes (U. of Frankfurt, Germany) Representative of 3 experiments. Control experiments showed that plasmid transfection per se did not cause expression of UPR markers vs. control VSMC (not shown).

GADD34 transfection. Analysis of ROS and specifically superoxide production was performed through HPLC analysis of dihydroethidium (DHE) oxidation products (21). Results showed significant prevention of ROS generation after UPR interruption with full-length GADD34, whereas increased eIF2 α phosphorylation with truncated GADD34 promoted a twofold increase in ROS generation (Fig. 3C).

Apoptosis during ER stress is executed through caspase-12 and can be inhibited through its silencing (101, 112). We asked whether such a distal UPR event could positively feedback on UPR signaling, since silencing of CHOP in models of diabetes

or coagulation factor VIII misfolding was recently reported not only to increase cell viability but also to decrease oxidant generation and Ero1 induction and to enhance antioxidant enzyme expression (62, 102). Using an siRNA against caspase-12, we showed that both ROS generation and, interestingly, Grp78 expression, were decreased after tunicamycin (Fig. 3B and C), suggesting that ROS generated at later UPR stages may feedback on UPR itself. Further experiments were performed in order to investigate whether intracellular ROS support UPR signaling after tunicamycin. VSMC were transiently transfected with catalase plasmids, with efficiency of transfection confirmed by ~70% increase in enzymatic activity, assessed in total cell homogenates 24 h following

transfection (data not shown). Catalase overexpression induced consistent decrease in tunicamycin-induced expression of Grp78 and Grp94 after 16 h of incubation (Fig. 3D), together with \sim 20% decrease in cell loss after 48 h (not shown).

Thus, our data add to previous observations (29, 30, 62, 69) indicating a mutual interdependence between the UPR and ROS generation or, in other words, that ROS play a role both downstream and upstream of UPR targets. Furthermore, these data add to several reports (Table 2) that suggest a role for ROS in synergizing with early UPR and sustaining an important adaptive arm of UPR signaling. While it may seem paradoxical that ROS simultaneously induce adaptive and apoptotic signals both in our study and in previous reports (59, 84), this is not unexpected, as both types of signals are normally co-induced at all UPR stages (90). How ROS synergize with earlier stages of the UPR is essentially unknown. Particularly interesting is the possibility that redox processes serve as a signal for misfolded proteins, as suggested by recent studies showing that client protein underoxidation is an important feature of misfolding (69) and that oxidant generation acts as an early misfolding signal in the ER (i.e., a ER stress signal), able to trigger the UPR (62). Additional relevant possibilities in this context include whether ROS themselves induce some degree of misfolding/ER stress, transactivate some UPR components, or promote other indirect signaling effects. Somewhat paradoxically, ATF6 undergoes specific thiol reduction and monomerization during ER stress as a requirement for its Golgi-dependent proteolytic activation (76). Grp78 is known to bind to unfolded proteins in the ER lumen in a way that normally prevents their induced activation of ER membrane sensors such as PERK, ATF6, or IRE1 (89). Grp78 also forms large complexes with several chaperones, particularly PDI, both at ER lumen (70) and cytosolic translocon interface (103). Formation of such complexes confers a potential redox regulation to early UPR pathways, considering that Grp78 itself seems not particularly redoxactive, with only one conserved cysteine (as a XCVX sequence near N-terminus). This may contrast with Grp94, which seems to be more sensitive to redox regulation (unpublished observations from our laboratory). Our data showing that GADD34 transfection decreases ROS generation after tunicamycin are at variance with prior results showing that CHOP-dependent GADD34 expression promotes counteradaptation due to eIF2α dephosphorylation and ensuing protein overloading into an already stressed ER, resulting in increased Ero1 activity and enhanced ER oxidation (64). Such differences may be due to the peculiar cell type and distinct basal ER protein loading conditions, in addition to an earlier and/or milder stage of UPR in our case. Indeed, PERK activity has been associated with cell death during the UPR (56), while sustained eIF2α phosphorylation was reported to promote antioxidant defenses during prolonged stress in neurons (52), thus stressing dichotomous roles for this pathway.

Altogether, the observations discussed in this section contextualize the notion that ROS are generated early and act as an intrinsic component of UPR, exerting both adaptive and proapoptotic effects.

ER Oxidoreductases as ROS Sources During the UPR

In this and in the next sections, we will discuss some possible mechanisms of enzyme-mediated ROS generation during the UPR. ER-dependent ROS generation during stress is connected in a yet poorly defined way to activity and upregulation of Ero1, particularly Ero1 β (61), which, as discussed previously, can promote electron transfer to molecular oxygen, generating hydrogen peroxide. Clearly, client proteins are underoxidized in the stressed ER (69), while Ero1 is more active (64), thus supporting the need for feeding of oxidizing equivalents from Ero1 to PDI. This is additionally favored in terminal phases of the UPR by the action of CHOP, which further induces Ero1α and directly activates GADD34 and protein load (64). The role of Ero1 in oxidant generation is supported by decrease in tunicamycin-induced DCF fluorescence in *C. elegans* by Ero1 siRNA (Table 2 and ref. 29). Whether and how this process is sustained is not precisely known. Because GSH (and perhaps other thiol reductants) can efficiently reduce non-native disulfide bonds even during normal ER conditions (15), it has been proposed that the PDI/Ero1/ROS redox cycles operate at increased levels through repeated futile attempts to fold reduced, improperly folded, substrates, a proposal consistent with studies in yeast expressing a mutated misfolded protein (30). Thus, there is a net transfer of reducing equivalents through multiple thioldisulfide exchanges from reduced glutathione to oxygen (15). A further source of ER reducing power consumption is ERAD, which requires protein reduction prior to their retrotranslocation and degradation (99, 117).

Despite the biochemical basis and relevant data for the proposal of such mechanism as an enzymatic source of ROS during the UPR, there are yet several critiques and/or unclear points that should be considered:

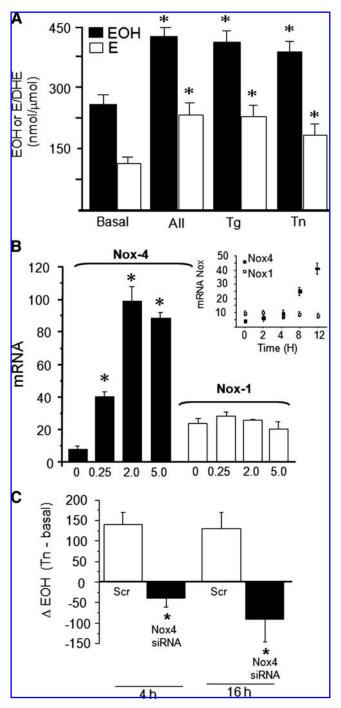
- 1. The introduction of constitutively active Ero1 mutated in its regulatory cysteines does not lead to detectable ROS increase, indicating that Ero1 activity alone is not sufficient to account for oxidant accumulation, at least in unstressed cells (96). Also, Ero1 structure lacks the clear channel for oxygen observed in Erv/QSOX (3).
- 2. The *in vivo* stoichiometry and quantitative modeling of these reactions are unclear: *in vitro* experiments suggest an equimolar H₂O₂ generation (27, 119), while substoichiometric ratios were reported for yeast Ero1p (114).
- 3. The rate constants of such sequential thiol–disulfide exchange reactions are unknown, and at least some of them may be slow and potentially rate-limiting. For example, the reduction of the bacterial PDI analog DsbA by GSH has a second order rate constant of $182 \, \mathrm{M}^{-1} \mathrm{s}^{-1}$ (36).
- 4. Some aspects of Ero1p action may be supported by electron acceptor(s) other than oxygen (114).
- 5. The activity of at least Ero1p, although not of the mammalian Ero1α (119), is strongly sensitive to ER concentrations of free FAD, the sufficiency of which during the UPR is unknown. Indeed, exogenous FAD has been reported to oxidize Ero1 and PDI in liver microsome preparations in a way consistent with direct feed-forward of oxidizing equivalents for protein folding (83).
- 6. It is unclear whether the same futile cycles of attempted refolding would occur to a significant extent with spontaneously unfolded nonmutated substrates. In addition, underoxidative changes of a redox protein

folding ER indicator, similar to those observed with ER stressors, were still observed to some extent in yeast overexpressing cysteine-less forms of misfolded carboxypeptidase Y, indicating that such repeated folding cycles may not be the sole explanation for ER redox dysfunction during the UPR (69).

- 7. Some reports suggest that the thiol–disulfide ratios of at least some proteins in the ER are shifted toward a more reduced state in livers of diabetic mice, known to display chronic ER stress and enhanced ROS generation, with PDI in the reduced form and Ero1 in an oxidized form (78). While this may be an intermediate state of adaptation involving the regulatory cysteines of Ero1 [which would thus be inactivated (96)], it is not straightforward to reconcile this picture with the above proposed ER mechanisms as a single pathway for ROS generation.
- 8. It is unclear how the protective effect of thiol antioxidants against ROS accumulation (30, 95) and UPR are explained by mechanisms involving the mentioned feeding of Ero1/ROS redox by glutathione. The proposed explanation for this effect has been often ascribed to scavenging of ROS by glutathione. However, the rate constants of direct ROS scavenging by thiols such as GSH is exceedingly low (e.g., 20, 87 and 1,300 M⁻¹.s⁻¹ for superoxide, hydrogen peroxide and peroxynitrite, respectively, see ref. 50 for sources. Even lower values are reported in ref. 123). Therefore, a scavenging effect of even high concentrations of glutathione against ROS is questionable.

Together, these considerations indicate some additional questions and potential drawbacks in an otherwise powerful and quantitatively important pathway for ROS generation. More investigation is needed in order to assess whether additional or parallel pathways are involved. Considering that in unstressed cells ROS generation through this mechanism could be equivalent to the amount of protein disulfides introduced into newly-synthesized secretory proteins, ROS output might be quite significant at least in protein factories such plasma cells (9) or in synthetic smooth muscle cells from atheromas (16, 75).

Mitochondrial ROS and the UPR


Evidence for a role of mitochondria in ROS generation during ER stress comes from experiments in which interference with mitochondrial respiration prevented UPR-induced ROS accumulation, as well as associated growth arrest or death. This was shown for tunicamycin-exposed Perk-/- cells (23) or Nrf2 -/- fibroblasts (14), as well as yeast expressing a mutant misfolded protein (30). A recent study also showed that hypoxic ROS-triggered UPR was abrogated in cytochrome-c null cells (59). The pathways connecting mitochondria and ER during the UPR comprise three categories: (a) direct physical contacts (106); (b) indirect mechanisms related to dysfunction of Ca⁺⁺ regulation (61, 106), as well as effects of ROS, ATP depletion, and even Nox4 NADPH oxidase isoform, which is upregulated even by mild mitochondrial dysfunction (124); (c) more specific pathways such as ER stress-inducible Lon protease, which protects mitochondria by interfering with cytochrome oxidase complex assembly/ degradation (34), or the bcl-2 family protein Nix, which promotes mitochondrial-mediated cardiomyocyte death *via* decreased sarcoplasmic calcium (18). The latter may be only one additional example of the important integrative role exerted by the bcl-2 family proteins, as already mentioned for Bax and Bak (32). Moreover, there is mounting evidence that mitochondria sustain a compartmental UPR, coupling mitochondrial-specific chaperone expression to perturbations in organelle protein processing (131). Although mitochondrial ROS production can induce such compartmental UPR, its induction per se does not seem to enhance mitochondrial oxidant generation (131).

ER Stress and NADPH Oxidase

While ER protein oxidation and mitochondria have been addressed in the recent past as ROS sources during ER stress, there is much less information concerning NADPH oxidase(s). Importantly, however, Nox4 NADPH oxidase isoform mRNA and protein expression has been shown to be induced in human vascular smooth muscle cells during ER stress promoted by the oxygenated lipid product 7-ketocholesterol, while Nox1 and Nox5 mRNA were unaltered (84). Similar findings were obtained in our laboratory after incubation of rabbit aortic vascular smooth muscle cells with tunicamycin (0.25–5.0 μ g/ml) for 16 h, or at different times after exposure to $2 \mu g/ml$ concentration (Fig. 4A and B). While Nox1 mRNA expression showed negligible changes, Nox4 mRNA exhibited marked concentration- and time-dependent increase after tunicamycin, detectable at ~ 4 h and reaching a 10-fold increase after 16 h of stimulus. Additional experiments with 24-h tunicamycin incubation (2 μ g/ml) showed increase in Nox4mRNA up to 60-fold, (unpublished observations), indicating sustained Nox4 increase throughout late UPR stages. Incubation for 16 h with 7-ketocholesterol (84) promoted increased oxidant production, which was abolished by PEG-SOD + PEG-catalase, by the flavoprotein inhibitor diphenylene iodonium or by an siRNA against Nox4. In our vascular smooth muscle cells incubated with tunicamycin $(2 \mu g/ml)$, we detected increased superoxide production (by HPLC analysis of DHE oxidation products) at 4 and 16 h of incubation. At both time points, superoxide was significantly inhibited and even decreased after an siRNA against Nox4 (Fig. 4C). These results indicate that at least a significant portion of ROS production under ER stress condition is attributable to Nox4 expression in vascular smooth muscle cells.

The functional consequences of Nox4 expression have been analyzed by Pedruzzi *et al.* (84). Remarkably, Nox 4 siRNA prevented the late onset of cell death induced by 7-ketocholesterol. Moreover, Nox4 silencing was able to inhibit or prevent several markers of the UPR, including not only the proapoptotic CHOP and Bax proteins, but also Grp78. Importantly, Nox4 siRNA was able to abolish the Ca²⁺ oscillations induced by 7-ketocholesterol 3 min after incubation (observed for 25 min), indicating a potentially very early role of Nox4 during ER stress/UPR signaling. Mechanisms of Nox4 induction during the UPR appear to involve the IRE1/JNK pathway, since Nox4 induction, as well as UPR markers, were inhibited by an siRNA against IRE1 or JNK phosphorylation inhibitors (84).

It is presently unclear whether this strong functionally relevant upregulation of Nox4 identified in vascular smooth muscle cells extends to other cell types, considering that cells vary widely in their constitutive and inducible Nox isoform expression (3). The observed Nox4 proadaptive and proapoptotic effects (84) conform to those of ROS discussed above. This further suggests that UPR signaling does not behave as a linear crescendo system, but as a more complex network of adaptive and apoptotic pathways. The role of Nox4 in UPR is in line with some specific characteristics of this isoform. Particularly, there is increasing evidence that Nox4 has a relevant localization and compartmental action in the ER (10, 31, 84, 94). This, however, may not be its exclusive location, since other studies addressing endogenous Nox4 have consistently identified a location at the cytoskeleton or focal adhesions

(33), in addition to an vet controversial nuclear staining (47, 84). It is possible that Nox4, while being primarily located within the ER, may exhibit significant intracellular traffic. This variability could also depend to some extent on technical issues, alternative spliced isoforms (26), or other unknown factors. While Nox4 requires the transmembrane topology characteristic of the Nox family (49), it is unknown whether the ROS-generating domain is at the ER lumen (the most logical arrangement) or at the cytosol. In the latter case, the oxidative ER lumen environment would not preclude NADPH-mediated O₂ reduction, since the ER NADPH and glutathione pools are independently redox-regulated due to negligible expression of NADPH-driven glutathione reductase (85). Whether ER-located Nox4 might contribute to protein folding is unclear, for an oxidative environment can indeed decrease the energetic cost of folding and facilitate achieving ideal protein conformation, but excessive oxidation leads to protein aggregation (99). In addition, because Nox4

FIG. 4. Nox 4 activation and ROS production during the UPR. (A) Assessment of membrane fraction NADPH oxidase activity after vascular smooth muscle cell incubation with Angiotensin II (AII, NADPH oxidase agonist which does not induce the UPR in this protocol; 100 nM), Thapsigargin (Tg, 1 μ M), or Tunicamycin (Tn, 5 μ g/ml) for 4 h. Membrane fraction homogenates were prepared after sequential centrifugations as described, incubated with DHE (50 μ M) (21, 124) and exposed to NADPH 300 μ M. After acetonitrile extraction, the supernatant was run on HPLC as described in detail (21, 51). Results depict 2-hydroxyethidium (EOH, which reflects mainly superoxide) or ethidium (E, which reflects less specific oxidants) products of DHE oxidation (in nmol product formation/ μ mol DHE consumed). (B) Real-time PCR analysis of Nox1 and Nox4 mRNA expression incubated (at 80% confluence) with the indicated concentrations of Tunicamycin (in $\mu g/ml$) for 16 h. Primer sequences and PCR protocol were described in ref. 124. Data are expressed as the ratio of Nox expression/actin mRNA expression in the same sample. The inset shows results of similar experiments, but cells were exposed with Tunicamycin (2 μ g/ml) at different times. Data are mean ± SE of 4 independent experiments. *p < 0.05 (Anova). (C) Effects of Nox4 siRNA(CÜGU UCCUGGCCUGACAGGTT) or scrambled control siRNA (CGTACTCCTAACAGCGCTCTT) on the response of superoxide production to Tunicamycin exposure in VSMC ($2 \mu g$ / ml, 4 or 16 h). The plasmid duplex (160 μ mol) was transfected using Lipofectamine as described in Fig. 3 legend and cells were used 24h after transfection. We were concerned that repeated transfections over a prolonged time period, necessary to achieve substantial decrease in basal Nox4 levels (92), might interfere with subsequent cellular adaptations involved in UPR signaling, in addition to Nox1 levels. Thus, we used short-term transfection in which Nox4 mRNA levels were unaltered at baseline and decreased by ~30% after Tunicamycin (2 µg/ml, 16 h), with no changes in Nox1 mRNA levels (data not shown). This strategy is further justified by reports that Nox4 activity is closely reflected by its mRNA expression (94). Under these conditions, baseline production of ROS was, as expected, unaltered by Nox4 siRNA, but significantly abrogated or decreased both 4 and 16h after Tunicamycin incubation vs. VSMC transfected with scrambled control siRNA. Results are shown as the absolute change in formed EOH product (in nmol/µmol DHE consumed). Values are mean \pm SE of 3–4 experiments. *p < 0.05 vs. Basal or scrambled siRNA.

might be glycosylated (26), it can be speculated that Nox4 traffic might help induce such an oxidative environment in post-ER compartments, thus helping to sustain some protein folding capacity outside of stressed ER, as proposed previously for mitochondrial oxidants (128). Another aspect of Nox4 is its close functional interaction with PTP1B in the ER, by promoting its oxidant-mediated inactivation (10). This phosphatase was reported to potentiate IRE1-dependent signaling during UPR and could thus be an important target of Nox4 during ER stress (28).

Which ROS Are Produced During the UPR?

The term "reactive oxygen species" (ROS) is usually employed to convey accuracy with respect to a general designation of chemical species arising from oxygen reduction and their related precursors and/or reactive reaction products. However, it should be considered that ROS are a very heterogeneous group of intermediates that differ widely with respect to reactivity, cellular location, partition, solubility, and diffusibility (discussed in refs. 40, 123). Particularly, some free radical ROS (such as superoxide) are one-electron oxidants, while several others (such as hydrogen peroxide, peroxynitrite) are two-electron oxidants. These properties turn the physiological consequences of each specific ROS significantly distinct, with important consequences regarding effects of antioxidant interventions. This emphasizes the importance of pursuing accurate identification of the precise intermediates being generated (123). Our data from Figs. 3 and 4 document (to our knowledge for the first time) the cellular production of superoxide during the UPR, using up-to-date specific and accurate HPLC methods (21, 51). On the other hand, detection of superoxide during the UPR poses intriguing questions, considering that kinetic data from sulfhydryl flavo-oxidases analogous to Ero1 argue against the production of superoxide as a relevant intermediate formed during catalysis (100). Furthermore, Nox4 is believed to generate mainly hydrogen peroxide, rather than superoxide, when its expression is induced in cells (31, 94) and possibly also endogenously (17). While an explanation for such discrepancies is unclear at present, it should be pointed out that induced Nox4 is also able to reduce nitrobluetetrazolium, a property consistent with superoxide generation (94). In addition, it can be speculated that post-translational modifications or alternative splicing (26) affecting the N-terminal portion of endogenous Nox4 might promote its superoxide generation, in line with recent elegant experiments using Nox1-Nox4 chimeras (31). In addition, evidence for NAD(P)H-triggered superoxide generation in microsomal fractions from arterial smooth muscle cells (132) or skeletal myocytes (125) has been reported. It is conceivable, therefore, that Nox4 is also able to yield superoxide under specific conditions.

All such considerations, as well as the several unknown questions still open with respect to ROS generation during the UPR, further raise the logical possibility that other mechanisms of ROS production may be operative during the UPR, although there are no data in this regard at present. Cytochrome p450 isoenzymes would appear as logical candidates, among others, due to their location and capacity to generate physiologically relevant amounts of superoxide (22). In mouse embryonic fibroblasts, thapsigargin but not tunicamycininduced ER stress and oxidant production can be abolished by

iNOS inhibitors, thus raising a possible involvement of this enzyme as an oxidant source (35).

Integration of ER, Mitochondria and NADPH Oxidase as ROS Sources During the UPR: Possible Role for Protein Disulfide Isomerase (PDI)?

Production of ROS in the ER, mitochondria, or via Noxes does not represent only distinct locations, but may also account for differences in the type of ROS, as well as in their amount and distribution. In this context, a conceptual but nonetheless relevant question is whether such ROS production during the UPR represents "redox signaling," as opposed to an "oxidative stress." Distinction between these two situations has been thoroughly addressed in recent reviews (40, 42, 123). While a clear state of oxidative stress occurs during established UPR, redox signaling targets might display some specificity during earlier UPR stages. Because such targets are likely multiple and configure mass physiological programs, we have come to describe this phenomenon as "redox macrosignaling." This would contrast with a restricted localized "redox microsignaling" often associated with compartmental NADPH oxidase activation (111). This likely determines distinct physiological signaling consequences and stimulusresponse correlations not only related to UPR but also to other indirect cell targets. In fact, ROS production during the UPR is likely to have components specific to this type of stress (in this case, the ER oxidoreductases and possibly Nox4) and components that belong to nonspecific cell stress responses (mitochondria and eventually Nox4). The first component, contrarily to the second, is likely to some extent to be preferentially related to "microsignaling" and "macrosignaling" than oxidative stress. ER-dependent ROS production, however, also has the quantitative potential to account for significant oxidative stress (9, 114, 115). Both components are also likely to suffer the influence of adaptive and secondary phenomena (Fig. 1).

Despite all those characteristics, there is a need for the integration of redox pathways in order to achieve signaling coherence on a cell basis during the UPR (Fig. 5). Not much is known about integration of distinct ROS enzymatic sources in cells except that it probably should involve multiple sensor and effector pathways (42, 123). It is unknown but at the same time unlikely that one discrete component of the UPR can account for such a complex integrative role by itself. The cross-talk between ER and mitochondria proceeds through a number of pathways, discussed above. In addition, we recently showed that even minor mitochondrial dysfunction promotes increase in baseline Nox4 mRNA levels, together with decreased Nox1 response to angiotensin II (124), thus indicating a cross-talk between mitochondria and Nox(es).

With respect to cross-talk between ER oxidoreductases and NADPH oxidase, we have provided significant evidence for a role of PDI. Our data showed that PDI acts as a regulatory protein of NADPH oxidase complex activation in VSMC (39) or macrophages (unpublished observations and Ref. 50). In both cell types, PDI loss-of-function experiments with pharmacological antagonists, neutralizing antibodies, antisense oligonucleotides, and, more recently, with a short-interference RNA (20), provided consistent evidence for a PDI-dependent functional modulation of NADPH oxidase, particularly of its induced activation by angiotensin II. Moreover, we showed

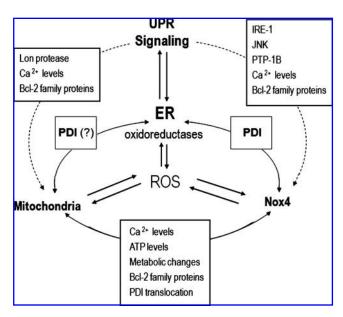


FIG. 5. Main enzymatic sources of ROS during the UPR and their integrative cross-talk. See text for details.

that PDI co-localizes and/or co-immunoprecipitates at least with subunits p22phox, Nox1, Nox2, and Nox4, indicating a close association with the oxidase complex. The primary PDI location is the ER lumen, where it assists redox protein folding and thiol isomerization and may thus be involved in ERmediated mechanisms of ROS generation discussed above. Nevertheless, upon NADPH oxidase activation, PDI suffers translocation/partition to membrane compartment, where it seems to assist the NADPH oxidase complex (39, 50), in line with the known PDI traffic to membranes in other cell types (50, 110). Moreover, we showed recently that a 2.3-fold overexpression of PDI promotes spontaneous agonistindependent NADPH oxidase activation and Nox1 mRNA expression in vascular smooth muscle cells in a way independent of PDI thiols, thus suggestive of a chaperone-type effect (20). Furthermore, we found that overexpressed PDI significantly sustains Nox4 mRNA levels in response to angiotensin II and/or S-nitrosoglutathione on a PDI thioldependent basis (20). It remains to be demonstrated whether PDI exerts a similarly important role with respect to Nox4 expression and function during the UPR, although our preliminary data are suggestive (unpublished observations from our laboratory). PDI is not usually considered to be strongly UPR- inducible (60), while it is upregulated and exerts a generally protective role in several stressful circumstances such as hypoxia (104), ischemia-reperfusion (108), development (97), or protein aggregate formation (116). Interestingly, PDI also has ascorbate reductase activity involving ER thiols, in a way that dehydroascorbate has been proposed as an oxidant for protein folding (77). The integrative role of PDI in ROS generation may also extend to mitochondrial dysfunction, which also promotes PDI translocation/partition to cell membranes in the context of interference with NADPH oxidase complex (124). Although PDI family members reportedly associate with mitochondria (44) and Grp78 translocates from ER to mitochondria during ER stress (105), their function concerning mitochondrial ROS generation is unknown. Remarkably, an elaborate thiol-disulfide redox relay carries proteins across mitochondrial intermembrane space and might be affected by PDI and ROS (6). Furthermore, PDI (50, 122) shares with mitochondria (128) the ability to modulate redox status of cell surface dithiol proteins. PDI could thus exert an important role in the integration between ER stress and redox processes, connecting in a functional and/or physical way the three major ROS sources discussed in this review: ER, mitochondria, and NADPH oxidase.

Another integrative element in this cross-talk of the three main ROS sources is ROS themselves. It is well-known that exposure to ROS (e.g., from NADPH oxidase and potentially from the ER) can trigger ROS generation from mitochondria via mechanisms including changes in membrane permeability, ion channel function, and possibly mitochondrial DNA mutations (124). In addition, it is now accepted that ROS can trigger NADPH oxidase expression and activation (53), particularly Nox4, which is quite sensitive to hydrogen peroxide (66). Furthermore, ROS, which closely modulate the UPR, as discussed above, will very likely result in further modulation of ROS generation from the ER. These considerations strengthen the possibility of a redox-mediated cross-talk affecting ROS generation by several sources during the UPR. This proposal is in line with the regulatory role of PDI described above and potentially with roles of other redoxsensitive thiol proteins (42), as well as glutathione and cysteine. Other potential integrative elements in ROS generation are metabolic changes, bcl-2 family proteins (discussed above), and Ca²⁺ level regulation. The latter is clearly important in the cross-talk between the ER and mitochondria (61, 106), while its role in the activation of Noxes other than Nox5 and Duox1/2, particularly of Nox4, is uncertain and has been reviewed previously (25). Nox4, however, appears able to trigger early Ca²⁺ oscillations during the UPR (84).

In summary, the integration of ROS production during the UPR likely involves multiple pathways that may be coordinated by ROS themselves, PDI, Ca²⁺ levels, bcl-2 family proteins, metabolic changes, and other specific signaling proteins, as illustrated by the scheme in Fig. 5.

ER Stress and ROS Generation in Vascular Diseases

The consequences of ER stress in several diseases have been addressed in a number of reviews (93, 133, 134). Thus, in cancer, diabetes. and neurodegeneration, among other diseases, the occurrence of oxidative stress may be tightly connected to integration with other types of stress, particularly ER stress. Moreover, chemical chaperones (120) or UPR gene targeting (62) may alleviate oxidative stress in these conditions. Here, we focus in vascular diseases, since their pathogenesis uniformly involves processes of response to stress (55). In addition, there is a growing body of evidence implicating Nox4 in redox cardiovascular pathophysiology, in contexts including stem cell differentiation (73) and response to hypoxia (72). Whether such Nox4 involvement occurs in a context of UPR and ER stress remains to be tested, although the involvement of PDI (108) and some UPR pathways in hypoxia is known (59). ER stress is involved in the pathogenesis of important vascular diseases, bringing about the significance of its convergence with oxidative stress, also known to contribute to such pathology. Particularly, ER stress markers are induced at several stages of the development of

atherosclerosis in experimental models (135). Moreover, UPR markers are particularly expressed in specimens from complicated atherosclerotic plaques (75), thus suggesting a correlation between ER stress and acute coronary syndromes. Such connection is in line with the known correlation between ER stress and inflammation (133). Cytokine expression in endothelial cells by oxidized phospholipids is dependent on UPR signals involving ATF4 and XBP1 (24). In addition, several pathways involving IRE1 signaling can lead to NF-κB and AP-1 activation (133). In the liver, ATF6-analog transcription factor CREBH can promote synthesis of acute phase proteins during ER stress (133). Although not much is known about how normal levels of nitric oxide affect ER homeostasis, excessive nitric oxide levels can perturb oxidative protein folding, at least in part by PDI S-nitrosation and inhibition of its isomerase activity (116), as well as by deregulation of Ca⁺⁺ homeostasis, in addition to S-nitrosation-dependent inhibition of mitochondrial electron transport chain. Thus, excess nitric oxide induces ER stress and ROS production (126, 133). Conversely, endogenous NO protected beta-cells from proteasome inhibitor-associated ER stress via activation of antioxidant-responsive element Gclc-ARE4-dependent genes (45). These pathways can be relevant not only at the local plaque milieu, but also at a systemic level, particularly considering the known role of ER stress as the pathophysiological basis of insulin resistance, obesity, and diabetes (133), known cardiovascular risk factors. Remarkably, genetic deletion of CHOP was recently shown, in distinct diabetes models, to reverse glucose intolerance and to decrease beta-cell loss, in association with increased UPR response and reduced oxidative damage (133). In addition, homocysteine, another risk factor, induces ER stress via mechanisms including direct interference with redox protein folding and Ca²⁺ deregulation (2). In part, ER stress-related atherosclerosis pathology may be associated with the known toxicity of free cholesterol towards the normally cholesterol-poor ER membranes, which leads to Ca++ release, UPR activation, and CHOP-induced apoptosis, in parallel with cytokine induction (54).

Summary and Conclusions

ROS production and oxidative stress can be considered an integral component of the UPR, being triggered by classical or noncanonical ER stressors and contributing to support UPR signaling, mainly at proapoptotic, but also proadaptive levels, in addition to a possible novel role as early misfolding signal (62). Moreover, oxidants from independent sources may also trigger at least some arms of the UPR, although experiments with exogenous ROS indicate that ROS exposure per se seems not sufficient to trigger the full UPR. Thus, ROS generation can occur both upstream and downstream to UPR signaling targets. Glutathione consumption is an important feature of the UPR, although the mechanism can be multiple. Antioxidant gene expression can be induced during the UPR as part of the integrated stress response. In parallel, oxidant generation and production of superoxide radical can be detected at early stages of the UPR. Many connections within this stress integration remain to be understood, but data so far suggest that ROS generation is supported by at least three enzyme-dependent sources: ER oxidoreductases, mitochondria, or NADPH oxidase isoform Nox4. How these ROS sources are integrated is unclear, but Ca²⁺ levels and ROS

themselves might contribute to this role, considering the known ROS-triggered ROS release both from mitochondria or NADPH oxidases such as Nox4 (7, 49, 66, 124). Particularly, PDI might have a role in the integration between ER stress and oxidative stress, at least in part through its known close interaction with NADPH oxidase complex (20, 39, 50), as well as through its role as substrate of Ero1. Collectively, as with many other stress signals, ROS generation might have a UPRspecific component (possibly via ER sources and Nox4) and a nonspecific stress-related component (such as mitochondria and also Nox4). Contextualizing the evidences discussed in this review, what would be the role of ROS and NADPH oxidase activation during the UPR? At this point, perhaps the best answer to this question is that, as intrinsic components of the UPR, ROS appear to be involved in the 4 "As" of this response (described in ref. 90): activation, acute response, adaptive response, and apoptosis, while Nox4 at least in the last three "As". Altogether, a more general implication of the data discussed in this article is to suggest that redox signaling, oxidative stress, and NADPH oxidase activation should be more often analyzed against the background of their integration with UPR signaling, ER stress, and in a broader sense cellular stress response-indeed a context in which they may all have evolutionarily co-developed.

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); CNPq—INCT de Processos Redox em Biomedicina- *Redoxoma*; Financiadora de Estudos e Projetos; Fundação *EJ Zerbini*.

References

- Acosta–Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, and Dynlacht BD. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. *Mol Cell* 27: 53–66, 2007
- Austin RC, Lentz SR, and Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 11: S56–64, 2004.
- 3. Bardwell JCA. The dance of disulfide formation. *Nat Struct Mol Biol* 11: 582–583, 2004.
- Bedard K and Krause K-H. The Nox family of ROSgenerating NADPH oxidases: physiology and pathophysiology. *Physiol Rev* 87: 245–313, 2007.
- Bernales S, McDonald KL, and Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. *PLoS Biol* 4: 2311–2324, 2006.
- Bihlmaier K, Mesecke N, Kloeppel C, and Herrmann JM. The disulfide relay of the intermembrane space of mitochondria: An oxygen-sensing system? *Ann NY Acad Sci* 1147: 293–302, 2008.
- Brandes RP and Kreuzer J. Vascular NADPH oxidases: Molecular mechanisms of activation. Cardiovasc Res 65: 16– 27, 2005
- 8. Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, and Shah AM. NADPH oxidases in cardio-vascular health and disease. *Antioxid Redox Signal* 8: 691–728, 2006
- Cenci S and Sitia R. Managing and exploiting stress in the antibody factory. FEBS Lett 581: 3652–3657, 2007.

- 10. Chen K, Kirber MT, Xiao H, Yang Y, and Keaney JF Jr. Regulation of ROS signal transduction by NADPH oxidase 4 localization. *J Cell Biol* 181: 1129–1139, 2008.
- 11. Clempus RE and Griendling KK. Reactive oxygen species signaling in vascular smooth muscle cells. *Cardiovasc Res* 71: 216–225, 2006.
- Clissold PM and Bicknell R. The thioredoxin-like fold: Hidden domains in protein disulfide isomerases and other chaperone proteins. *Bioessays* 25: 603–611, 2003.
- 13. Cullinan SB and Diehl JA. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. *Int J Biochem Cell Biol* 38: 317–332, 2006.
- 14. Cullinan SB and Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. *J Biol Chem* 279: 20108–20117, 2004.
- 15. Cuozzo JW and Kaiser CA. Competition between glutathione and protein thiols for disulphide-bond formation. *Nat Cell Biol* 1: 130–135, 1999.
- Dickhout JG, Colgan SM, Lhoták S, and Austin RC. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome: A balancing act between plaque stability and rupture. *Circulation* 116: 1214–1216, 2007.
- Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HH, Harrison DG, and Griendling KK. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. *Free Radic Biol Med.* 45: 1340–1351, 2008.
- 18. Diwan A, Matkovich SJ, Yuan Q, Zhao W, Yatani A, Brown JH, Molkentin JD, Kranias EG, and Dorn GW II. Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death. *J Clin Invest* 119: 203–212, 2009.
- Ellgaard L and Ruddock LW. The human protein disulphide isomerase family: Substrate interactions and functional properties. EMBO Rep 6: 28–32, 2005.
- Fernandes DC, Manoel AHO, Wosniak J Jr., and Laurindo FR. Protein disulfide isomerase overexpression in vascular smooth muscle cells induces spontaneous preemptive NADPH oxidase activation and Nox1 mRNA expression: Effects of nitrosothiol exposure. *Arch Biochem Biophys* 484: 197–204, 2009.
- 21. Fernandes DC, Wosniak J Jr, Bertoline M, Liberman M, Laurindo FR, and Santos CXC. Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. Am J Physiol Cell Physiol 292: C413–422, 2007.
- 22. Fleming I, Michaelis UR, Bredenkötter D, Fisslthaler B, Dehghani F, Brandes RP, and Busse R. Endothelium-derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 88: 44–51, 2001.
- 23. Forman HJ. Use and abuse of exogenous H₂O₂ in studies of signal transduction. *Free Radic Biol Med* 42: 926–932, 2007.
- 24. Gargalovic PS, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, Truong A, Baruch–Oren T, Berliner JA, Kirchgessner TG, and Lusis AJ. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol 26: 2490–2496, 2006.
- Görlach A, Klappa P, and Kietzmann T. The endoplasmic reticulum: Folding, calcium homeostasis, signaling, and redox control. *Antioxid Redox Signal* 8: 1391–1418, 2006.
- Goyal P, Weissmann N, Rose F, Grimminger F, Schäfers HJ, Seeger W, and Hänze J. Identification of novel Nox4 splice

- variants with impact on ROS levels in A549 cells. *Biochem Biophys Res Commun* 329: 32–39, 2005.
- 27. Gross E, Sevier CS, Heldman N, Vitu E, Bentzur M, Kaiser CA, Thorpe C, and Fass D. Generating disulfides enzymatically: Reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. *Proc Natl Acad Sci USA* 103: 299–304, 2006.
- Gu F, Nguyên DT, Stuible M, Dubé N, Tremblay ML, and Chevet E. Protein-tyrosine phosphatase 1B potentiates IRE1 signaling during endoplasmic reticulum stress. *J Biol Chem* 279: 49689–49693, 2004.
- 29. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, and Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. *Mol Cell* 11: 619–633, 2003.
- Haynes CM, Titus EA, and Cooper AA. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 15: 767–776, 2004.
- 31. Helmcke I, Heumüller S, Tikkanen R, Schröder K, and Brandes RP. Identification of structural elements in Nox1 and Nox4 controlling localization and activity. *Antioxid Redox Signal* [Epub ahead of print], 2008 Dec 8.
- 32. Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, Brandt GS, Iwakoshi NN, Schinzel A, Glimcher LH, and Korsmeyer SJ. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. *Science* 312: 572–576, 2006.
- 33. Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, and Griendling KK. Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. *Arterioscler Thromb Vasc Biol* 24: 677–683, 2004.
- 34. Hori O, Ichinoda F, Tamatani T, Yamaguchi A, Sato N, Ozawa K, Kitao Y, Miyazaki M, Harding HP, Ron D, Tohyama M, Stern D, and Ogawa S. Transmission of cell stress from endoplasmic reticulum to mitochondria: Enhanced expression of Lon protease. *J Cell Biol* 157: 1151–1160, 2002.
- 35. Hsieh YH, Su IJ, Lei HY, Lai MD, Chang WW, and Huang W. Differential endoplasmic reticulum stress signaling pathways mediated by iNOS. *Biochem Biophys Res Commun* 359: 643–648, 2007.
- Hu HY, Cheng HQ, Li Q, Zou YS, and Xu GJ. Study of the redox properties of metallothionein *in vitro* by reacting with DsbA protein. *J Protein Chem* 18: 665–670, 1999.
- Hwang C, Sinskey AJ, and Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum. *Science* 257: 1496–14502, 1992.
- 38. Iuchi Y, Okada F, Tsunoda S, Kibe N, Shirasawa N, Ikawa M, Okabe M, Ikeda Y, and Fujii J. Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. *Biochem J* 419: 149–153, 2009.
- Janiszewski M, Lopes LR, Carmo AO, Pedro MA, Brandes RP, Santos CX, and Laurindo FR. Regulation of NAD(P)H oxidase by associated protein disulfide isomerase in vascular smooth muscle cells. *J Biol Chem* 280: 40813–40819, 2005.
- Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295: C849–868, 2008.
- Kagan VE and Tyurina YY. Recycling and redox cycling of phenolic antioxidants. Ann NY Acad Sci 854: 425–434, 1998.
- 42. Kemp M, Go YM, and Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: A perspective

on redox systems biology. Free Radic Biol Med 44: 921–937, 2008.

- 43. Kim J, Choi TG, Ding Y, Kim Y, Ha KS, Lee KH, Kang I, Ha J, Kaufman RJ, Lee J, Choe W, Kim SS. Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2 + homeostasis after ER stress. *J Cell Sci* 121: 3636–3648, 2008.
- 44. Kimura T, Horibe T, Sakamoto C, Shitara Y, Fujiwara F, Komiya T, Yamamoto A, Hayano T, Takahashi N, Kikuchi M. Evidence for mitochondrial localization of P5, a member of the protein disulphide isomerase family. *J Biochem* 144: 187–196, 2008.
- Kitiphongspattana K, Khan TA, Ishii–Schrade K, Roe MW, Philipson LH, and Gaskins HR. Protective role for nitric oxide during the endoplasmic reticulum stress response in pancreatic beta-cells. Am J Physiol Endocrinol Metab 292: E1543– E1554, 2007.
- 46. Kültz D. Molecular and evolutionary basis of the cellular stress response. *Annu Rev Physiol* 67: 225–257, 20005.
- 47. Kuroda J, Nakagawa K, Yamasaki T, Nakamura K, Takeya R, Kuribayashi F, Imajoh–Ohmi S, Igarashi K, Shibata Y, Sueishi K, and Sumimoto H. The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. *Genes Cells* 10: 1139–1151, 2005.
- 48. Larade K, Jiang ZG, Dejam A, Zhu H, and Bunn HF. The reductase NCB5OR is responsive to the redox status in beta-cells and is not involved in the ER stress response. *Biochem J* 404: 467–476, 2007.
- Lassègue B and Clempus RE. Vascular NAD(P)H oxidases: Specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285: R277–297, 2003.
- Laurindo FR, Fernandes DC, Amanso AM, Lopes LR, Santos CX. Novel role of protein disulfide isomerase in the regulation of NADPH oxidase activity: Pathophysiological implications in vascular diseases. *Antioxid Redox Signal* 10: 1101–1113, 2008.
- Laurindo FR, Fernandes DC, and Santos CX. Assessment of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation products. *Methods Enzymol* 441: 237–260, 2008.
- Lewerenz J and Maher P. Basal levels of eIF2{alpha} phosphorylation determine cellular antioxidant status by regulating ATF4 and xCT expression. *J Biol Chem* 284: 1106– 1115, 2009.
- 53. Li WG, Miller FJ Jr, Zhang HJ, Spitz DR, Oberley LW, and Weintraub NL. H(2)O(2)-induced O(2) production by a non-phagocytic NAD(P)H oxidase causes oxidant injury. *J Biol Chem* 276: 29251–29256, 2001.
- 54. Li Y, Schwabe RF, DeVries–Seimon T, Yao PM, Gerbod-Giannone MC, Tall AR, Davis RJ, Flavell R, Brenner DA, and Tabas I. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: Model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. *J Biol Chem* 280: 21763–2172, 2005.
- 55. Libby P and Theroux P. Pathophysiology of coronary artery disease. *Circulation* 111: 3481–3488, 2005.
- Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, and Walter P. IRE1 signaling affects cell fate during the unfolded protein response. Science 318: 944–949, 2007.
- Linster CL and Van Schaftingen E. Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS J 274: 1–22, 2007.

58. Liou W, Chang LY, Geuze HJ, Strous GJ, Crapo JD, and Slot JW. Distribution of CuZn superoxide dismutase in rat liver. *Free Radic Biol Med* 14: 201–207, 1993.

- Liu L, Wise DR, Diehl JA, and Simon MC. Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. *J Biol Chem* 283: 31153–31162, 2008.
- Maattanen P, Kozlov G, Gehring K, and Thomas DY. ERp57 and PDI: multifunctional protein disulfide isomerases with similar domain architectures but differing substrate-partner associations. *Biochem Cell Biol* 84: 881–889, 2006
- Malhotra JD and Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a doubleedged sword? *Antioxid Redox Signal* 9: 2277–2293, 2007.
- 62. Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe SW, and Kaufman RJ. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci USA 105: 18525–18530, 2008.
- 63. Marchetti P, Bugliani M, Lupi R, Marselli L, Masini M, Boggi U, Filipponi F, Weir GC, Eizirik DL, and Cnop M. The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. *Diabetologia*. 50: 2486–2494, 2007.
- 64. Marciniak SJ and Ron D. Endoplasmic reticulum stress signaling in disease. *Physiol Rev* 86:1133–1149, 2006.
- Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, and Ron D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. *Genes Dev* 18: 3066– 3077, 2004.
- 66. Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, and Knaus UG. Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. *Cell Signal*. 18: 69–82, 2006.
- McCracken AA and Brodsky JL. Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). *Bioessays* 25: 868–877, 2003.
- McCullough KD, Martindale JL, Klotz LO, Aw TY, and Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. *Mol Cell Biol* 21: 1249–1259, 2001.
- Merksamer PI, Trusina A, and Papa FR. Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. *Cell.* 13: 933–947, 2008.
- Meunier L, Usherwood YK, Chung KT, and Hendershot LM. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. *Mol Biol Cell* 13: 4456–4469, 2002.
- 71. Michalak M, Robert Parker JM, and Opas M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. *Cell Calcium* 32: 269–278, 2002.
- 72. Mittal M, Roth M, König P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska G, Kummer W, Klepetko W, Hoda MA, Fink L, Hänze J, Seeger W, Grimminger F, Schmidt HH, and Weissmann N. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101: 258–267, 2007.
- Mofarrahi M, Brandes RP, Gorlach A, Hanze J, Terada LS, Quinn MT, Mayaki D, Petrof B, and Hussain SN. Regulation of proliferation of skeletal muscle precursor cells by NADPH oxidase. *Antioxid Redox Signal* 10: 559–574, 2008.

- Muller M. Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations. *Antioxid Redox Signal* 11: 59–98, 2009.
- 75. Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, Asada Y, Okada K, Ishibashi–Ueda H, Gabbiani G, Bochaton–Piallat ML, Mochizuki N, and Kitakaze M. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. *Circulation* 116: 1226–1233, 2007.
- Nadanaka S, Okada T, Yoshida H, and Mori K. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. *Mol Cell Biol* 27: 1027–1043, 2007.
- 77. Nardai G, Braun L, Csala M, Mile V, Csermely P, Benedetti A, Mandl J, and Banhegyi G. Protein-disulfide isomerase-and protein thiol-dependent dehydroascorbate reduction and ascorbate accumulation in the lumen of the endoplasmic reticulum. *J Biol Chem* 276: 8825–8828, 2001.
- 78. Nardai G, Stadler K, Papp E, Korcsmáros T, Jakus J, and Csermely P. Diabetic changes in the redox status of the microsomal protein folding machinery. *Biochem Biophys Res Commun* 334: 787–795, 2005.
- Nonaka H, Tsujino T, Watari Y, Emoto N, and Yokoyama M. Taurine prevents the decrease in expression and secretion of extracellular superoxide dismutase induced by homocysteine: Amelioration of homocysteine-induced endoplasmic reticulum stress by taurine. *Circulation* 104: 1165–1170, 2001.
- Novoa I, Zeng H, Harding HP, and Ron D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. *J Cell Biol* 153: 1011–1022, 2001.
- 81. Okado–Matsumoto A, Matsumoto A, Fujii J, and Taniguchi N. Peroxiredoxin IV is a secretable protein with heparinbinding properties under reduced conditions. *J Biochem* 127: 493–501, 2000.
- Palotai R, Szalay MS, and Csermely P. Chaperones as integrators of cellular networks: Changes of cellular integrity in stress and diseases. *IUBMB Life* 60: 10–18, 2008.
- 83. Papp E, Nardai G, Mandl J, Bánhegyi G, and Csermely P. FAD oxidizes the ERO1-PDI electron transfer chain: The role of membrane integrity. *Biochem Biophys Res Commun* 338: 938–945, 2005.
- 84. Pedruzzi E, Guichard C, Ollivier V, Driss F, Fay M, Prunet C, Marie JC, Pouzet C, Samadi M, Elbim C, O'dowd Y, Bens M, Vandewalle A, Gougerot-Pocidalo MA, Lizard G, and Ogier–Denis E. NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. *Mol Cell Biol* 24: 10703–10717, 2004.
- 85. Piccirella S, Czegle I, Lizák B, Margittai E, Senesi S, Papp E, Csala M, Fulceri R, Csermely P, Mandl J, Benedetti A, and Bánhegyi G. Uncoupled redox systems in the lumen of the endoplasmic reticulum. Pyridine nucleotides stay reduced in an oxidative environment. *J Biol Chem* 281: 4671–4677, 2006.
- 86. Rattan SI, Sejersen H, Fernandes RA, and Luo W. Stressmediated hormetic modulation of aging, wound healing, and angiogenesis in human cells. *Ann NY Acad Sci* 1119: 112–121, 2007.
- 87. Rodriguez Milla MA, Maurer A, Rodriguez Huete A, and Gustafson JP. Glutathione peroxidase genes in *Arabidopsis* are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. *Plant J* 36: 602–615, 2003.

- 88. Romero DL, Mounho BJ, Lauer FT, Born JL, and Burchiel SW. Depletion of glutathione by benzo(a)pyrene metabolites, ionomycin, thapsigargin, and phorbol myristate in human peripheral blood mononuclear cells. *Toxicol Appl Pharmacol* 144: 62–69, 1997.
- 89. Ron D and Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. *Nat Rev Mol Cell Biol* 8: 519–529, 2007.
- 90. Rutkowski DT and Kaufman RJ. That which does not kill me makes me stronger: Adapting to chronic ER stress. *Trends Biochem Sci* 32: 469–476, 2007.
- Sanson M, Augé N, Vindis C, Muller C, Bando Y, Thiers JC, Marachet MA, Zarkovic K, Sawa Y, Salvayre R, and Nègre– Salvayre A. Oxidized low-density lipoprotein triggers endoplasmic reticulum stress in vascular cells. Prevention by oxygen-regulated protein 150 expression. *Circ Res* 104: 328– 336, 2009.
- Schröder K, Wandzioch K, Helmcke I, Brandes RP. Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol 29: 239–245, 2009.
- 93. Schröder M and Kaufman RJ. The mammalian unfolded protein response. *Annu Rev Biochem* 74: 739–789, 2005.
- 94. Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O, Sienkiewicz A, Fórró L, Schlegel W, and Krause KH. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. *Biochem J* 406: 105–114, 2007.
- 95. Sevier CS and Kaiser CA. Ero1 and redox homeostasis in the endoplasmic reticulum. *Biochim Biophys Acta* 1783: 549–556, 208.
- Sevier CS, Qu H, Heldman N, Gross E, Fass D, and Kaiser CA. Modulation of cellular disulfide-bond formation and the ER redox environment by feedback regulation of Ero1. Cell 129: 333–344, 2007.
- 97. Shan SW, Tang MK, Cai DQ, Chui YL, Chow PH, Grotewold L, and Lee KK. Comparative proteomic analysis identifies protein disulfide isomerase and peroxiredoxin I as new players envolved in embryonic interdigital death. *Dev Dyn* 233: 266–281, 2005.
- Siritantikorn A, Johansson K, Ahlen K, Rinaldi R, Suthiphongchai T, Wilairat P, and Morgenstern R. Protection of cells from oxidative stress by microsomal glutathione transferase 1. *Biochem Biophys Res Commun* 355: 592–596, 2007.
- 99. Sitia R and Braakman I. Quality control in the endoplasmic reticulum protein factory. *Nature* 426: 891–894, 2003.
- 100. Sliwkowski MX, Swaisgood HE, Clare DA, and Horton HR. Kinetic mechanism and specificity of bovine milk sulphydryl oxidase. *Biochem J* 220: 51–55, 1984.
- 101. Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, Dawson VL, Dawson TM, and Ross CA. Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. *Hum Mol Genet* 14: 3801–3811, 2005.
- 102. Song B, Scheuner D, Ron D, Pennathur S, and Kaufman RJ. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 118: 3378–3389, 2008.
- 103. Stockton JD, Merkert MC, and Kellaris KV. A complex of chaperones and disulfide isomerases occludes the cytosolic face of the translocation protein Sec61p and affects translocation of the prion protein. *Biochemistry* 42: 12821–12834, 2003

- 104. Sullivan DC, Huminiecki L, Moore JW, Boyle JJ, Poulsom R, Creamer D, Barker J, and Bicknell R. EndoPDI, a novel protein–disulfide isomerase-like protein that is preferentially expressed in endothelial cells acts as a stress survival factor. *J Biol Chem* 278: 47079–47088, 2003.
- 105. Sun FC, Wei S, Li CW, Chang YS, Chao CC, and Lai YK. Localization of GRP78 to mitochondria under the unfolded protein response. *Biochem J* 396: 31–39, 2006.
- 106. Szabadkai G and Rizzuto R. Participation of endoplasmic reticulum and mitochondrial calcium handling in apoptosis: more than just neighborhood? *FEBS Lett* 567: 111–115, 2004.
- 107. Tagawa Y, Hiramatsu N, Kasai A, Hayakawa K, Okamura M, Yao J, and Kitamura M. Induction of apoptosis by cigarette smoke via ROS-dependent endoplasmic reticulum stress and CCAAT/enhancer-binding protein-homologous protein (CHOP). *Free Radic Biol Med* 45: 50–59, 2008.
- 108. Tanaka S, Uehara T, and Nomura Y. Up-regulation of protein-disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. J Biol Chem 275: 10388–10393, 2000.
- 109. Tavender TJ, Sheppard AM, and Bulleid NJ. Peroxiredoxin IV is an endoplasmic reticulum-localized enzyme forming oligomeric complexes in human cells. *Biochem J.* 411: 191– 199, 2008.
- 110. Terada K, Manchikalapudi P, Noiva R, Jauregui HO, Stockert RJ, and Schilsky ML. Secretion, surface localization, turnover, and steady state expression of protein disulfide isomerase in rat hepatocytes. *J Biol Chem* 270: 20410– 20416, 1995.
- 111. Terada LS. Specificity in reactive oxidant signaling: Think globally, act locally. *J Cell Biol* 174: 615–623, 2006.
- 112. Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, Kawase I, and Hirota H. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. *Mol Cell Biol* 25: 9554–9575, 2005.
- 113. Traber MG, Burton GW, and Hamilton RL. Vitamin E trafficking. *Ann NY Acad Sci* 1031: 1–12, 2004.
- 114. Tu BP, Ho–Schleyer SC, Travers KJ, and Weissman JS. Biochemical basis of oxidative protein folding in the endoplasmic reticulum. *Science* 290: 1571–1574, 2000.
- 115. Tu BP and Weissman JS. Oxidative protein folding in eukaryotes: Mechanisms and consequences. *J Cell Biol* 164: 341–346, 2004.
- 116. Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, Masliah E, Nomura Y, and Lipton SA. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. *Nature* 441: 513–517, 2006.
- 117. Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, and Nagata K. ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. *Science* 321: 569–572, 2008.
- 118. Van der Woude H, Alink GM, and Rietjens IM. The definition of hormesis and its implications for in vitro to in vivo extrapolation and risk assessment. *Crit Rev Toxicol* 35: 603–607, 2005.
- 119. Wang L, Li SJ, Sidhu A, Zhu L, Liang Y, Freedman RB, and Wang CC. Reconstitution of human Ero1-Lα/protein-disulfide isomerase oxidative folding pathway *in vitro*: Position-dependent differences in role between the a and a' domains of protein-disulfide isomerase. *J Biol Chem* 284: 199–206, 2009.

120. Wei H, Kim SJ, Zhang Z, Tsai PC, Wisniewski KE, and Mukherjee AB.ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and nonneurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. *Hum Mol Genet*.17: 469– 477, 2008.

- 121. Wek RC, Jiang HY, and Anthony TG. Coping with stress: eIF2 kinases and translational control. *Biochem Soc Trans* 34: 7–11, 2006.
- 122. Wilkinson B and Gilbert HF. Protein disulfide isomerase. *Biochim Biophys Acta* 1699: 35–44, 2004.
- 123. Winterbourn CC and Hampton MB. Thiol chemistry and specificity in redox signaling. *Free Radic Biol Med.* 45: 549–561, 2008.
- 124. Wosniak JJr, Santos CXC, Kowaltowski AJ, and Laurindo FR. Cross-talk between mitochondria and NADPH oxidase: Effects of mild mitochondrial dysfunction on angiotensin II-mediated increase in Nox isoform expression and activity in vascular smooth muscle cells. *Antiox Redox Signal* 11: 1265–1278, 2009.
- 125. Xia R, Webb JA, Gnall LL, Cutler K, and Abramson JJ. Skeletal muscle sarcoplasmic reticulum contains a NADH-dependent oxidase that generates superoxide. *Am J Physiol Cell Physiol.* 285: C215–C221, 2003.
- 126. Xu W, Liu L, Charles IG, and Moncada S. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. *Nat Cell Biol* 6: 1129– 1134, 2004.
- 127. Xue X, Piao JH, Nakajima A, Sakon–Komazawa S, Kojima Y, Mori K, Yagita H, Okumura K, Harding H, and Nakano H. Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. *J Biol Chem* 280: 33917–33925, 2005.
- 128. Yang Y, Song Y, and Loscalzo J. Regulation of the protein disulfide proteome by mitochondria in mammalian cells. Proc Natl Acad Sci USA 104: 10813–10817, 2007.
- 129. Yen WL and Klionsky DJ. How to live long and prosper: Autophagy, mitochondria, and aging. *Physiology (Bethesda)* 23: 248–262, 2008.
- 130. Yokouchi M, Hiramatsu N, Hayakawa K, Okamura M, Du S, Kasai A, Takano Y, Shitamura A, Shimada T, Yao J, and Kitamura M. Involvement of selective reactive oxygen species upstream of proapoptotic branches of unfolded protein response. *J Biol Chem* 283: 4252–4260, 2008.
- 131. Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, and Ron D. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117: 4055–4066, 2004.
- 132. Zhang F, Jin S, Yi F, Xia M, Dewey WL, and Li PL. Local production of O2- by NAD(P)H oxidase in the sarcoplasmic reticulum of coronary arterial myocytes: cADPR-mediated Ca2+regulation. *Cell Signal* 20: 637–644, 2008.
- Zhang K and Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. *Nature* 454: 455–462, 2008.
- 134. Zhao L and Ackerman SL. Endoplasmic reticulum stress in health and disease. *Curr Opin Cell Biol* 18: 444–452, 2006.
- 135. Zhou J, Werstuck GH, Lhoták S, de Koning AB, Sood SK, Hossain GS, Møller J, Ritskes–Hoitinga M, Falk E, Dayal S, Lentz SR, and Austin RC. Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice. Circulation 110: 207–213, 2004.

Address correspondence to:
Francisco R. M. Laurindo
Vascular Biology Laboratory
Heart Institute (InCor)
University of São Paulo School of Medicine
Av Eneas C Aguiar, 44 - Annex II, 9th floor
CEP 05403-000, São Paulo, Brazil

E-mail: francisco.laurindo@incor.usp.br

Date of first submission to ARS Central, April 10, 2009; date of acceptance, April 22, 2009.

Abbreviations Used

AngII = angiotensin II

ATF = activating transcription factor

Bref-A = brefeldin-A

CHOP = CAAT/enhancer binding protein (C/EBP) homologuos protein

DCF(d) = dichlorofluorescein (derivative)

DH-123 = dihydrorhodamine 123

DHE = dihydroethidium

DTNB = 5,5'-dithiobis-(2-nitrobenzoate)

DTT = dithiothreitol

E = ethidium

 $eIF2\alpha = eukaryotic translation initiation factor 2$

EOH = 2-hydroxyethetidium

ER = endoplasmic reticulum

ERAD = ER-associated degradation

Ero = endoplasmatic reticulum oxidoreductase

GADD = growth arrest and DNA damage

Grp = glucose-regulated protein

GSSG/GSH = oxidized to reduced glutathione

HEK = human embryonic kidney

HPLC = high performance liquid chromatography

IRE = inositol requiring protein

ISR = integrated stress response

JNK = c-Jun N-terminal kinase

KDEL = lys-asp-glu-leu (C-terminal ER retention sequence)

 $NF-\kappa B$ = nuclear factor κB

Nox = NADPH oxidase

ORP = oxygen-regulated protein

PDI = protein disulfide isomerase

PERK = RNA activated protein kinase (PKR)-like endoplasmic reticulum kinase

PP1c = protein phosphatase-1

PTP1B = protein tyrosine phosphatase 1B

ROS = reactive oxygen species

siRNA = small interference RNA

Tg = thapsigargin

Tn = tunicamycin

 $TNF\alpha = tumor necrosis factor$

UPR = unfolded protein response

VSMC = vascular smooth muscle cell

XBP = X-box binding protein

This article has been cited by:

- 1. Annayya R. Aroor, Chirag H. Mandavia, James R. Sowers. 2012. Insulin Resistance and Heart Failure. *Heart Failure Clinics* **8**:4, 609-617. [CrossRef]
- 2. Durvanei Augusto Maria, Jean Gabriel Souza, Katia L. P. Morais, Carolina Maria Berra, Hamilton de Campos Zampolli, Marilene Demasi, Simone Michaela Simons, Renata Freitas Saito, Roger Chammas, Ana Marisa Chudzinski-Tavassi. 2012. A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production. *Investigational New Drugs*. [CrossRef]
- 3. Marc Fransen, Marcus Nordgren, Bo Wang, Oksana Apanasets. 2012. Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. *Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease* **1822**:9, 1363-1373. [CrossRef]
- 4. Ji Hyun Choi, Jung Yeon Lee, A-Young Choi, Keun-Young Hwang, Wonchae Choe, Kyung-Sik Yoon, Joohun Ha, Eui-Ju Yeo, Insug Kang. 2012. Apicidin induces endoplasmic reticulum stress- and mitochondrial dysfunction-associated apoptosis via phospholipase C#1- and Ca2+-dependent pathway in mouse Neuro-2a neuroblastoma cells. *Apoptosis*. [CrossRef]
- 5. Michael J. Pagliassotti. 2012. Endoplasmic Reticulum Stress in Nonalcoholic Fatty Liver Disease. *Annual Review of Nutrition* 32:1, 17-33. [CrossRef]
- 6. Shelley X.L. Zhang, Yang Wang, David GozalPathological Consequences of Intermittent Hypoxia in the Central Nervous System . [CrossRef]
- 7. Madhumohan R. Katika, Peter J.M. Hendriksen, Norbert C.A. de Ruijter, Henk van Loveren, Ad Peijnenburg. 2012. Immunocytological and biochemical analysis of the mode of action of bis (tri-n-butyltin) tri-oxide (TBTO) in Jurkat cells. *Toxicology Letters* 212:2, 126-136. [CrossRef]
- 8. Giovanni Quarato, Rosella Scrima, Francesca Agriesti, Darius Moradpour, Nazzareno Capitanio, Claudia Piccoli. 2012. Targeting mitochondria in the infection strategy of the hepatitis C virus. *The International Journal of Biochemistry & Cell Biology*. [CrossRef]
- 9. Christian Appenzeller-Herzog, Michael N. Hall. 2012. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. *Trends in Cell Biology* 22:5, 274-282. [CrossRef]
- 10. Francisco R.M. Laurindo, Luciana A. Pescatore, Denise de Castro Fernandes. 2012. Protein disulfide isomerase in redox cell signaling and homeostasis. *Free Radical Biology and Medicine* **52**:9, 1954-1969. [CrossRef]
- 11. Ping Song, Ming-Hui Zou. 2012. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. *Free Radical Biology and Medicine* **52**:9, 1607-1619. [CrossRef]
- 12. Slaven Crnkovic, Monika Riederer, Margarete Lechleitner, Seth Hallström, Roland Malli, Wolfgang F. Graier, Jörg Lindenmann, Helmut Popper, Horst Olschewski, Andrea Olschewski, Saša Frank. 2012. Docosahexaenoic acid-induced unfolded protein response, cell cycle arrest, and apoptosis in vascular smooth muscle cells are triggered by Ca2+-dependent induction of oxidative stress. *Free Radical Biology and Medicine* **52**:9, 1786-1795. [CrossRef]
- 13. M. Demasi, F. R. M. Laurindo. 2012. Physiological and pathological role of the ubiquitin-proteasome system in the vascular smooth muscle cell. *Cardiovascular Research*. [CrossRef]
- 14. Karen L. Posey, Francoise Coustry, Alka C. Veerisetty, Peiman Liu, Joseph L. Alcorn, Jacqueline T. Hecht. 2012. Chop (Ddit3) Is Essential for D469del-COMP Retention and Cell Death in Chondrocytes in an Inducible Transgenic Mouse Model of Pseudoachondroplasia. *The American Journal of Pathology* 180:2, 727-737. [CrossRef]
- Françoise Coustry, Karen L. Posey, Peiman Liu, Joseph L. Alcorn, Jacqueline T. Hecht. 2012. D469del-COMP Retention in Chondrocytes Stimulates Caspase-Independent Necroptosis. *The American Journal of Pathology* 180:2, 738-748. [CrossRef]
- 16. William Pooi Kat Chong, Shu Hui Thng, Ai Ping Hiu, Dong-Yup Lee, Eric Chun Yong Chan, Ying Swan Ho. 2012. LC-MS-based metabolic characterization of high monoclonal antibody-producing Chinese hamster ovary cells. *Biotechnology and Bioengineering* n/a-n/a. [CrossRef]
- 17. Yasuhiro Maejima, Daniela Zablocki, Junichi SadoshimaOxidative Stress and Cardiac Muscle 309-322. [CrossRef]
- 18. N. Krishnan, C. Fu, D. J. Pappin, N. K. Tonks. 2011. H2S-Induced Sulfhydration of the Phosphatase PTP1B and Its Role in the Endoplasmic Reticulum Stress Response. *Science Signaling* **4**:203, ra86-ra86. [CrossRef]
- 19. Yingmei Zhang, Zhi Xia, Karissa H. La Cour, Jun Ren. 2011. Activation of Akt Rescues Endoplasmic Reticulum Stress-Impaired Murine Cardiac Contractile Function via Glycogen Synthase Kinase-3#-Mediated Suppression of Mitochondrial Permeation Pore Opening. *Antioxidants & Redox Signaling* 15:9, 2407-2424. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links] [Supplemental material]

- 20. Jisun Lee, Tae Gyu Choi, Joohun Ha, Sung Soo Kim. 2011. Cyclosporine A suppresses immunoglobulin G biosynthesis via inhibition of cyclophilin B in murine hybridomas and B cells. *International Immunopharmacology*. [CrossRef]
- 21. Barbara Mlinar, Janja Marc. 2011. Review: New insights into adipose tissue dysfunction in insulin resistance. *Clinical Chemistry and Laboratory Medicine ---*. [CrossRef]
- 22. Jennifer Rieusset. 2011. Mitochondria and endoplasmic reticulum: Mitochondria—endoplasmic reticulum interplay in type 2 diabetes pathophysiology. *The International Journal of Biochemistry & Cell Biology* **43**:9, 1257-1262. [CrossRef]
- 23. Christopher L. Gentile, Melinda Frye, Michael J. Pagliassotti. 2011. Endoplasmic Reticulum Stress and the Unfolded Protein Response in Nonalcoholic Fatty Liver Disease. *Antioxidants & Redox Signaling* 15:2, 505-521. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF] with Links]
- 24. Xiaomei Liang, Ming Hu, Christopher Q. Rogers, Zheng Shen, Min You. 2011. Role of SIRT1-FoxO1 Signaling in Dietary Saturated Fat-Dependent Upregulation of Liver Adiponectin Receptor 2 in Ethanol-Administered Mice. *Antioxidants & Redox Signaling* 15:2, 425-435. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 25. Anna A. Szypowska, Boudewijn M.T. Burgering. 2011. The Peroxide Dilemma: Opposing and Mediating Insulin Action. *Antioxidants & Redox Signaling* **15**:1, 219-232. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 26. Sergey Dikalov. 2011. Cross talk between mitochondria and NADPH oxidases. Free Radical Biology and Medicine . [CrossRef]
- 27. Yung-Chung Hsu, Margot M. Ip. 2011. Conjugated linoleic acid-induced apoptosis in mouse mammary tumor cells is mediated by both G protein coupled receptor-dependent activation of the AMP-activated protein kinase pathway and by oxidative stress. *Cellular Signalling*. [CrossRef]
- 28. Ju Huang, Grace Y. Lam, John H. Brumell. 2011. Autophagy Signaling Through Reactive Oxygen Species. *Antioxidants & Redox Signaling* 14:11, 2215-2231. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF] with Links]
- 29. Grant R. Drummond, Stavros Selemidis, Kathy K. Griendling, Christopher G. Sobey. 2011. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. *Nature Reviews Drug Discovery* **10**:6, 453-471. [CrossRef]
- 30. Imad Al Ghouleh, Nicholas K.H. Khoo, Ulla G. Knaus, Kathy K. Griendling, Rhian M. Touyz, Victor J. Thannickal, Aaron Barchowsky, William M. Nauseef, Eric E. Kelley, Phillip M. Bauer, Victor Darley-Usmar, Sruti Shiva, Eugenia Cifuentes-Pagano, Bruce A. Freeman, Mark T. Gladwin, Patrick J. Pagano. 2011. Oxidases and peroxidases in cardiovascular and lung disease: New concepts in reactive oxygen species signaling. *Free Radical Biology and Medicine*. [CrossRef]
- 31. Mirjam Kool, Monique A.M. Willart, Menno van Nimwegen, Ingrid Bergen, Philippe Pouliot, J. Christian Virchow, Neil Rogers, Fabiola Osorio, Caetano Reis e Sousa, Hamida Hammad, Bart N. Lambrecht. 2011. An Unexpected Role for Uric Acid as an Inducer of T Helper 2 Cell Immunity to Inhaled Antigens and Inflammatory Mediator of Allergic Asthma. *Immunity* 34:4, 527-540. [CrossRef]
- 32. Z. Yu, W. Shao, Y. Chiang, W. Foltz, Z. Zhang, W. Ling, I. G. Fantus, T. Jin. 2011. Oltipraz upregulates the nuclear respiratory factor 2 alpha subunit (NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. *Diabetologia* 54:4, 922-934. [CrossRef]
- 33. Celio X.C. Santos, Narayana Anilkumar, Min Zhang, Alison C. Brewer, Ajay M. Shah. 2011. Redox signaling in cardiac myocytes. *Free Radical Biology and Medicine* **50**:7, 777-793. [CrossRef]
- 34. Irena Szumiel. 2011. Autophagy, reactive oxygen species and the fate of mammalian cells. *Free Radical Research* **45**:3, 253-265. [CrossRef]
- 35. Ira Tabas, David Ron. 2011. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. *Nature Cell Biology* **13**:3, 184-190. [CrossRef]
- 36. Yasuhiro Maejima, Junya Kuroda, Shouji Matsushima, Tetsuro Ago, Junichi Sadoshima. 2011. Regulation of myocardial growth and death by NADPH oxidase. *Journal of Molecular and Cellular Cardiology* **50**:3, 408-416. [CrossRef]
- 37. Tom Pettersson, Jonas Kantonen, Sampsa Matikainen, Heikki Repo. 2011. Setting up TRAPS. *Annals of Medicine* 1-10. [CrossRef]
- 38. O. A. Smirnova, A. V. Ivanov, O. N. Ivanova, V. T. Valuev-Elliston, S. N. Kochetkov. 2011. Cell defense systems against oxidative stress and endoplasmic reticulum stress: Mechanisms of regulation and the effect of hepatitis C virus. *Molecular Biology* **45**:1, 110-122. [CrossRef]
- 39. Jianlin Chen, Reji John, James A Richardson, John M Shelton, Xin J Zhou, Yanxia Wang, Qing Qing Wu, John R Hartono, Pamela D Winterberg, Christopher Y Lu. 2011. Toll-like receptor 4 regulates early endothelial activation during ischemic acute kidney injury. *Kidney International* **79**:3, 288-299. [CrossRef]

- 40. Augusto C. Montezano, Dylan Burger, Graziela S. Ceravolo, Hiba Yusuf, Maria Montero, Rhian M. Touyz. 2011. Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5. *Clinical Science* **120**:4, 131-141. [CrossRef]
- 41. Y. Quiros, L. Vicente-Vicente, A. I. Morales, J. M. Lopez-Novoa, F. J. Lopez-Hernandez. 2011. An Integrative Overview on the Mechanisms Underlying the Renal Tubular Cytotoxicity of Gentamicin. *Toxicological Sciences* **119**:2, 245-256. [CrossRef]
- 42. Dora Il'yasova, Kelly Kennedy, Ivan Spasojevic, Frances Wang, Adviye A. Tolun, Karel Base, Sarah P. Young, P. Kelly Marcom, Jeffrey Marks, David S. Millington, Mark W. Dewhirst. 2011. Individual responses to chemotherapy-induced oxidative stress. *Breast Cancer Research and Treatment* 125:2, 583-589. [CrossRef]
- 43. Jose M Lopez-Novoa, Yaremi Quiros, Laura Vicente, Ana I Morales, Francisco J Lopez-Hernandez. 2011. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. *Kidney International* **79**:1, 33-45. [CrossRef]
- 44. Rhian M Touyz, Ana M Briones. 2011. Reactive oxygen species and vascular biology: implications in human hypertension. *Hypertension Research* **34**:1, 5-14. [CrossRef]
- 45. Asli F. Ceylan-Isik, Nair Sreejayan, Jun Ren. 2011. Endoplasmic reticulum chaperon tauroursodeoxycholic acid alleviates obesity-induced myocardial contractile dysfunction. *Journal of Molecular and Cellular Cardiology* **50**:1, 107-116. [CrossRef]
- 46. Yang Wang, Shelley X.L. Zhang, David Gozal. 2010. Reactive oxygen species and the brain in sleep apnea#. *Respiratory Physiology & Neurobiology* **174**:3, 307-316. [CrossRef]
- 47. Melissa Nassif, Soledad Matus, Karen Castillo, Claudio Hetz. 2010. Amyotrophic Lateral Sclerosis Pathogenesis: A Journey Through the Secretory Pathway. *Antioxidants & Redox Signaling* 13:12, 1955-1989. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 48. Grace Y. Lam, Ju Huang, John H. Brumell. 2010. The many roles of NOX2 NADPH oxidase-derived ROS in immunity. Seminars in Immunopathology 32:4, 415-430. [CrossRef]
- 49. Xianghong Kuang, Wenhui Hu, Mingshan Yan, Paul K.Y. Wong. 2010. Phenylbutyric acid suppresses protein accumulation-mediated ER stress in retrovirus-infected astrocytes and delays onset of paralysis in infected mice. *Neurochemistry International* 57:7, 738-748. [CrossRef]
- 50. Vamsi K. Kodali , Colin Thorpe . 2010. Oxidative Protein Folding and the Quiescin–Sulfhydryl Oxidase Family of Flavoproteins. *Antioxidants & Redox Signaling* 13:8, 1217-1230. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 51. Christian Appenzeller-Herzog, Jan Riemer, Ester Zito, King-Tung Chin, David Ron, Martin Spiess, Lars Ellgaard. 2010. Disulphide production by Ero1#–PDI relay is rapid and effectively regulated. *The EMBO Journal* **29**:19, 3318-3329. [CrossRef]
- 52. G. Leibowitz, E. Bachar, M. Shaked, A. Sinai, M. Ketzinel-Gilad, E. Cerasi, N. Kaiser. 2010. Glucose regulation of #-cell stress in type 2 diabetes. *Diabetes, Obesity and Metabolism* 12, 66-75. [CrossRef]
- 53. B. Jiang, A. R. Khandelwal, L. K. Rogers, V. Y. Hebert, J. J. Kleinedler, J. H. Zavecz, W. Shi, A. W. Orr, T. R. Dugas. 2010. Antiretrovirals Induce Endothelial Dysfunction via an Oxidant-Dependent Pathway and Promote Neointimal Hyperplasia. *Toxicological Sciences* 117:2, 524-536. [CrossRef]
- 54. Thomas Simmen, Emily M. Lynes, Kevin Gesson, Gary Thomas. 2010. Oxidative protein folding in the endoplasmic reticulum: Tight links to the mitochondria-associated membrane (MAM). *Biochimica et Biophysica Acta (BBA) Biomembranes* 1798:8, 1465-1473. [CrossRef]
- 55. Wayne Chris Hawkes, Zeynep Alkan. 2010. Regulation of Redox Signaling by Selenoproteins. *Biological Trace Element Research* **134**:3, 235-251. [CrossRef]
- 56. Bo Zhang, Yan Wang, Xueli Pang, Yongping Su, Guoping Ai, Tao Wang. 2010. ER stress induced by ionising radiation in IEC-6 cells. *International Journal of Radiation Biology* **86**:6, 429-435. [CrossRef]
- 57. Jung Sub Lim, Michele Mietus-Snyder, Annie Valente, Jean-Marc Schwarz, Robert H. Lustig. 2010. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. *Nature Reviews Gastroenterology & Hepatology* **7**:5, 251-264. [CrossRef]
- 58. Nicolas Dejeans, Nicolas Tajeddine, Raphaël Beck, Julien Verrax, Henryk Taper, Philippe Gailly, Pedro Buc Calderon. 2010. Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells. *Biochemical Pharmacology* **79**:9, 1221-1230. [CrossRef]
- 59. David I. Brown, Kathy K. Griendling. 2009. Nox proteins in signal transduction. *Free Radical Biology and Medicine* **47**:9, 1239-1253. [CrossRef]

60.	Tomasz J. Guzil	k . Kathv K. Gr	riendling . 2009	. NADPH Oxi	dases: Molecula	nr Understanding l	Finally Reaching th	ne Clinical
	Level?. Antioxid	lants & Redox	Signaling 11 :10), 2365-2370.	[Abstract] [Full	Text HTML] [Fu	ll Text PDF] [Full	Text PDF